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Abstract. This paper presents a novel approach to decomposition and
classification of rat’s cortical evoked potentials (EPs). The decomposition
is based on learning of a sparse set of basis functions using Evolution-
ary Algorithms (EAs). The basis functions are generated in a potentially
overcomplete dictionary of the EP components according to a proba-
bilistic model of the data. Compared to the traditional, statistical signal
decomposition techniques, this allows for a number of basis functions
greater than the dimensionality of the input signals, which can be of
a great advantage. However, there arises an issue of selecting the most
significant components from the possibly overcomplete collection. This
is especially important in classification problems performed on the de-
composed representation of the data, where only those components that
provide a substantial discernibility between EPs of different groups are
relevant. In this paper, we propose an approach based on the Rough Set
theory’s (RS) feature selection mechanisms to deal with this problem.
We design an EA and RS-based hybrid system capable of signal decom-
position and, based on a reduced component set, signal classification.

1 Introduction

Signal decomposition plays a very important role in the analysis of Evoked Po-
tentials (EPs) [1]. Among the most popular methods for EP decomposition,
one will find Principal Component Analysis (PCA) [2], Independent Component
Analysis (ICA) [3], [4] or wavelet-based analysis [5]. In general, a common way
to represent real-valued EPs can be based upon a linear superposition of some



basis functions (i.e. components). Bases such as wavelets can provide a very
useful representation of some signals, however, they have serious limitations in
terms of the number as well as the characteristics of the basis functions they
employ [5], [6].

An alternative and more general method of signal representation via trans-
formation uses Sparse Coding with Overcomplete Bases (SCOB) [7], [8]. This
methodology is based on the assumption that data can be represented by a set
of statistically independent events (i.e. basis functions). An additional conjec-
ture requires the probability distributions of those events to be sparse, meaning
that the data can be usually described in terms of a relatively small number
of those events. At the same time, an overcomplete representation allows for a
greater number of basis functions than the dimensionality of the input signals,
which provides much greater flexibility in terms of capturing structures hidden
in data [9], [10], [11]. The SCOB methodology, due to the employment of an
overcomplete representation, provides a powerful mechanism for a detailed data
modeling. However, even if the sparseness of the basis functions is accounted
for and preserved, the issue of selecting the most significant components from
the possibly overcomplete collection is still crucial. This is especially important
for some signal classification applications that can use SCOB as a data prepro-
cessing/transformation tool. In such applications, only those components that
provide the best discernibility between signals that belong to different groups or
classes, are relevant.

While a similar idea of dimensionality reduction via a two-stage feature se-
lection has already been proposed by Swiniarski in the hybridization of PCA
and Rough Sets (RS) [12], it appears that the application of this approach to
sparse coding with overcomplete bases is quite unique. Subsequently, we propose
an algorithm for learning a potentially overcomplete basis of the EP components
by viewing it as a probabilistic model of the observed data. From this model, we
derive a simple and robust learning algorithm by maximizing the data likelihood
over the basis.

2 Bayesian Motivated Model

The primary step in measuring the form of EPs is to decompose them into
parts (i.e. components). Components can be expressed by some basis functions
weighted by coefficients. Therefore, we assume that each data vector x can be
described by a set of basis functions M and coefficients a, plus some additive
noise ε:

x = Ma + ε. (1)

The unknown parameters to be estimated are a and M. Developing efficient
algorithms to solve this equation is an active research area. A given data point
can have many possible representations. Nevertheless, this ambiguity can be
removed by a proper choice of the prior probability of the basis coefficients,
P(a), which specifies the probability of the alternative representations. Standard



approaches to signal representation do not specify the prior for the coefficients.
A more general approach is to use the information theory and the probabilistic
formulation of the problem [13], [14]. Rather than making prior assumption
about the shape or form of the basis functions, those functions are adapted to
the data using an algorithm that maximizes the log-probability of the data under
the model.

The coefficients a from (1) can be inferred from x by maximizing the condi-
tional probability of a, given x and M, which can be expressed via Bayes’ rule
as:

a = arg max
a

P (a|x,M) ∝ arg max
a

P (x|a,M)P (a). (2)

The first term of the right hand side of the proportion specifies the likelihood
of the signal under the model for a given state of the coefficients:

P (x|a,M) ∝ exp
(
− λ

ZσN
|x−Ma|2

)
, (3)

where ZσN is normalizing constant, λ = 1/σ2, and σ is the standard deviation
of the additive noise. The second term specifies the prior probability distribution
over the basis coefficients, where:

P (a) =
∏

j

exp (−S(aj)) , (4)

where aj is the coefficient of the j-th basis function and S (aj ) is a sparseness
term given by βlog(1 + (aj/γ)2), where β and γ are scaling factors. This sparse
coding constraint encourages the model to use relatively few basis functions to
represent the input signal. This leads to approximate redundancy reduction [15].

Thus, the maximization of the log-probability in (2) becomes:

a = arg min
a


λN

2
|x−Ma|2 +

∑

j

S(aj)


 . (5)

3 Evolutionary algorithm for proposed sparse coding

From the model presented in Sect. 2, we derive a simple and robust learning
algorithm by maximizing the data likelihood over the basis functions.

Some research has been previously done in applying Genetic Algorithms
(GAs) to the blind source separation (BSS) and ICA [16]. In our work, an Evo-
lutionary Algorithm (EA) is used to solve the problem of finding the best repre-
sentation of a given signal in terms of basis functions and coefficients. The EA
searches for an optimum by iteratively changing a population of temporary so-
lutions encoded into chromosomes [17]. Each chromosome represents the matrix



of basis functions M and the matrix of coefficients a. Fitness function, mini-
mized in our case, is based on (5) and consists of two parts: 1) the error of the
reconstructed signals and 2) the sparse cost of the values of the coefficients:

f =
∑

i


∑

t

∣∣∣∣∣∣
xi(t)−

∑

j

aijMj(t)

∣∣∣∣∣∣
+

∑

j

S(aij)


 , (6)

where xi(t) is the value of the i-th input signal at time t, Mj (t) is the value
of the j-th basis function at time t, and aij is the value of the coefficient for the
j-th basis function for the i-th input signal.

4 Rough sets-based selection of classification-relevant
components from a potentially overcomplete set of
basis functions

The SCOB methodology provides a very efficient mechanism for data transfor-
mation. The fact that the collection of basis functions is potentially overcomplete
allows for a very detailed and accurate modeling. On the other hand, this can
cause a given problem to become more difficult to analyze, due to the increase
of the conceptual dimensionality of the task. In traditional techniques, such as
PCA, feature extraction is based upon minimization of the reconstruction error
and the “most expressive” components are selected according to some statisti-
cal criteria [18]. Sometimes, however, the reconstruction error is not important,
while the feature reduction task is crucial. This is especially true for any classifi-
cation problem performed on the new representation of the data (i.e. coefficients
for a given set of basis functions), in which one is looking for the smallest pos-
sible set of components that explain all the variations between different classes
(i.e. groups) of objects. In terms of evoked potentials, for instance, traditional
approaches do not guarantee that selected components, as a feature vector in
the new representation, will be competent for classification.

One possibility for dealing with this problem, is to apply the theory of rough
sets [19], [20]. In this case, especially useful will be the concept of reducts, inher-
ently embedded in the theory. Intuitively, an application of the SCOB method-
ology will yield an adequate and detailed model of the input data, whilst the
RS-based search for reducts will determine the most significant components in
that model, in terms of data classification.

Obviously, since the RS theory operates on integer-valued data by principle,
the real values of coefficients representing the signals need to be first discretized
(i.e. divided into intervals that will be assigned ordered, integer values) [21], [22].

5 Experiments and results

5.1 Data

In the neuro-physiological experiments underlying our project, a piezoelectric
stimulator was attached to a vibrissa of a rat. An electrical impulse of 5 V



amplitude and 1 ms duration was applied to the stimulator causing the vibrissa
deflection. Evoked Potentials were then registered – each of them related to
a single stimulus. Based on same previous work, a hypothesis about a relation
between two components of the registered evoked potentials and particular brain
structures (i.e. supra- and infra-granular pyramidal cells) was stated. In order to
verify the hypothesis, a series of additional stimuli was applied to the surface of
the cortex – cooling events allowing to temporarily “switch off” some structures
of the brain. The main goal of these experiments was to investigate those stimuli
in the sense of their impact on the brain activity represented by the registered
EPs (for a detailed description of the study, see [23], [24]).

A single, four-level electrode positioned in the cortex of a rat, collected the
data. The electrode registered brain activity in a form of evoked potentials on
four depths (i.e. channels) simultaneously. Each EP was then sampled and is
represented in the database by 100 values. The complete database consists of
four separate data sets for each of the four channels with 882 records in each
data set.

Because of the fact that the third channel’s electrode was acknowledged as
the most “representative” perspective at the activity of the cortex, it was usually
chosen as the input to our experiments.

5.2 Analysis

A sequence of experiments was performed in order to verify and analyze the per-
formance of the proposed approach. The overall effectiveness of the algorithm, in
the light of previous findings, was considered. The most important issue was to
investigate if the system was capable of determining components similar to the
ones obtained in previous work by PCA [24] and ICA [6]. Furthermore, it was
crucial to explore the ability of the system to automatically select the compo-
nents that really mattered in terms of the discrimination between the registered
EPs. Those components, were assumed to explain most of the differences between
EPs in the database, especially between normal and cooled potentials.

In all the experiments described in this section, an evolutionary algorithm
implemented by the authors of this article was used for the signal decomposition
(see also [6]). Additionally, the Rosetta system [25] along with some authors’ im-
plementations of rough sets were employed for the RS-based value discretization
and feature selection/reduction.

The complete set of 882 evoked potentials, registered on the 3rd channel,
was used as the input to the evolutionary algorithm. Based on the conclusions
derived from some preliminary work on the same data (i.e. having too many
basis functions, some of them appeared to be completely insignificant – see [6])
the goal of the algorithm was to determine a set of 10 basis functions (note: not
really overcomplete in this case). A graphical representation of the discovered
basis functions is shown in Fig. 1.

It is important to point out that the “polarization” of the basis functions is
not really relevant, since the coefficients can also take negative values.



Fig. 1. 10 basis functions computed from the complete data set (Mx denotes the x-th
basis function).

Based on this new representation of the input data (i.e. coefficients for the
basis functions), RS-driven search for reducts was applied – after the prior dis-
cretization, the Johnson’s reduction algorithm [25] was launched.

Various configurations of the discretization and/or reduction algorithms were
investigated. The most interesting results are shown in Fig. 2, where the aver-
aged selected components of the signals registered on the 3rd channel (i.e. basis
functions weighted by the coefficients of the signals) are shown.

Since the decision attribute (i.e. cooling event) was only approximately de-
fined in our database, it was impossible to directly determine the classification
accuracy based on the discretized and reduced data. However, the most impor-
tant part of this project was to verify the coherency of the results obtained
with our approach with the results produced by other methods and, based on
this, improve and extend the process of EP analysis by providing an automatic
methodology for signal decomposition and selection of significant components.
This goal was successfully achieved since the characteristics of two basis func-
tions determined by the evolutionary algorithm, were extremely similar to the
first two components received with both, PCA and ICA (see [24], [6]), and those
two basis functions were always selected by the reduction algorithms. Addition-
ally, as it can be clearly seen in Fig. 2, the system, after the signal decomposition,
pointed out several other important components that provide an ability to dis-
cern between the EPs in the database (guaranteed by the reduction algorithm
– indiscernibility relation holds). Additionally, the algorithm determined some
clear differences between two main classes of the analyzed evoked potentials –
normal vs. cooled, which was the main goal of the neuro-physiological experi-
ments underlying our project.



Fig. 2. Comparison of the reduced averaged components between normal (A) and
cooled (B) 3rd channel (Cx denotes the averaged x-th component). Discretization
method: Equal Frequency Bin. Reduction method: Johnson’s Algorithm (reduct: [C3,
C6, C7, C9, C10]).

6 Conclusions

On the basis of the experiments described above, we can conclude that the
proposed EA and RS-based hybrid system provides a useful and effective tool
in terms of EP decomposition and classification. Our results, obtained via the
SCOB methodology, were coherent with previous work in terms of the signal’s
main components, which suggests that this approach delivers comparable capa-
bilities in terms of signal decomposition. On the other hand, the system provides
a significant extension to the traditional approaches thanks to the potentially
overcomplete representation of the input data as well as the mechanisms for an
automatic determination of relevant components, in terms of signal classification.
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