
Chapter 6The Hodgkin and Huxley Model ofAction Potential GenerationThe vast majority of nerve cells generate a series of brief voltage pulses in response tovigorous input. These pulses, also referred to as action potentials or spikes, originate at orclose to the cell body, and propagate down the axon at constant velocity and amplitude.The composite �gure 6.1 shows the shape of the action potential from a number of di�erentneuronal and non-neuronal preparations. Action potentials come in a variety of shapes;common to all is the all-or-none depolarization of the membrane beyond 0 mV. That is, ifthe voltage fails to exceed a particular threshold value, no spike is initiated and the potentialreturns to its baseline level. If the voltage threshold is exceeded, the membrane executesa stereotyped voltage trajectory that reects membrane properties and not the input. Asevident in Fig. 6.1, the shape of the action potential can vary enormously from cell type tocell type.When inserting an electrode into a brain, the small all-or-none electrical events oneobserves extracellularly are usually due to spikes that are initiated close to the cell bodyand that propagate along the axons. These spikes have but a single peak between +10 and+30 mV and are over (depending on the temperature) within one or two milliseconds. Otherall-or-none events, such as the complex spikes in cerebellar Purkinje cells (Fig. 6.1G) or burst-ing pyramidal cells in cortex (Fig. 6.1H and Fig. 16.1) show a more complex wave form withone or more fast spikes superimposed onto an underlying, much slower depolarization. Fi-nally, under certain conditions, the dendritic membrane can also generate all-or-none events(Fig. 6.1H) that are much slower than somatic spikes, usually on the order to 50-100 msecor longer. We will treat these events and their possible signi�cance in chapter 19.Only a small fraction of all neurons are unable|under physiological conditions|to gen-erate action potentials, making exclusive use of graded signals. Examples of such non-spikingcells, usually spatially compact, can be found in the distal retina (e.g. bipolar, horizontaland certain types of amacrine cells) and many neurons in the sensory-motor pathway ofinvertebrates (Roberts and Bush, 1981). They appear to be absent from cortex, thalamus,cerebellum and associated structures (although it is di�cult, on a priori grounds, to com-139



140 Christof Koch, Aug-20-97pletely rule out their existence).Action potentials are such a dominant feature of the nervous system that for a consider-able amount of time it was widely held|and still is in parts of the theoretical community|that all neuronal computations only involve these all-or-none events. This belief providedmuch of the impetus behind the neural network models originating in the late 1930s andearly 1940s (Rashevsky, 1938; McCullough and Pitts, 1943).The ionic mechanisms underlying the initiation and propagation of action potentials innervous tissue were �rst elucidated in the squid giant axon by a number of workers, most no-tably by Alan Hodgkin and Andrew Huxley in Cambridge, England (1952a,b,c,d). Togetherwith John Eccles, they shared the 1963 Nobel price in physiology and medicine (for a his-torical account see Hodgkin, 1976). Their quantitative model (Hodgkin and Huxley, 1952d)represents one of the high points of cellular biophysics and has been extremely inuentialin terms of enabling a large class of quite diverse membrane phenomena to be analyzed andmodeled in terms of simple underlying variables. This is all the more surprising since thekinetic description of membrane permeability changes within the framework of the Hodgkin-Huxely model was achieved without any knowledge of the underlying ionic channels.A large number of excellent papers and book describing in great detail various aspects ofthe Hodgkin and Huxley model are available today. Nothing matches the monograph by Jack,Noble and Tsien (1975) for their detailed, 200 page extended coverage of various analyticaland numerical approaches to understand all relevant aspects of initiation and conduction ofaction potentials. Cronin (1987) presents a mathematical account of the more formal aspectsof Hodgkin and Huxley's and related model, while Scott (1975) pays particular attention toquestions of interest to physicists and applied mathematicians. The books by Hille (1992),Johnston and Wu (1994) and Weiss (1996) provide up-to-date and very readable accountsof the biophysical mechanisms underlying action potential in neuronal tissues. The editedvolume by Waxman, Kocsis and Stys (1995) provides more details regarding the morphologyand the pathophysiology of myelinated and unmyelinated axons.Because the biophysical mechanisms underlying action potential generation in the cellbody and axons of both invertebrates and vertebrates can be understood and modeled bythe formalism Hodgkin and Huxley introduced 40 years ago, it becomes imperative to under-stand their model and its underlying assumptions. We will strive in this chapter to give anaccount of those properties of the Hodgkin and Huxley model that are of greatest relevanceto understanding the initiation of the action potential. We will also discuss the propagationof spikes along unmyelinated and myelinated �bers. Chapter 9 extends the Hodgkin andHuxley framework to the plethora of other currents described since their days.6.1 The Basic AssumptionsHodgkin and Huxley carried out their analysis in the giant axon of the squid. With its halfmillimeter diameter, this �ber is a leviathan among axons (the typical axon in cortex has adiameter more than one thousand times smaller; Braitenberg and Sch�uz, 1991). In order toeliminate the complexity introduced by the distributed nature of the cable, a highly conduc-
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Figure 6.1: Action Potentials of the WorldAction potentials in di�erent invertebrate and vertebrate preparations. Common to all is a thresh-old, below which no impulse is initiated, and a stereotypical shape that depends only on intrinsicmembrane properties and not on the type or the duration of the input. (A) Giant squid axon at16� C. From Baker, Hodgkin and Shaw (1962). (B) Axonal spike from the node of Ranvier in amyelinated frog �ber at 22� C. From Dodge (1963). (C) Cat visual cortex at 37� C. J. Allison, per-sonal communication. (D) Sheep heart Purkinje �ber at 10� C. From Weidmann (1956). (E) Patchclamp recording from a rabbit retinal ganglion cell at 37� C. F. Amthor, personal communication.(F) Layer 5 pyramidal cell in the rat at room temperatures. Simultaneous recordings from thesoma and the apical trunk. From Stuart and Sakmann (1994). (G) A complex spike|consistingof a large EPSP superimposed onto a slow dendritic calcium spike and several fast somatic sodiumspikes|from a Purkinje cell body in the rat cerebellum at 36� C. D. Jaeger, personal communica-tion. (H) Layer 5 pyramidal cell in the rat at room temperature. Three dendritic voltage tracesin response to three current steps of di�erent amplitude reveal the all-or-none character of thisslow event. Notice the fast, superimposed spikes. From Kim and Connors (1993). (I) Cell body ofa projection neuron in the antennal lobe in the locust at 23� C. G. Laurent, personal communication.
tive axial wire was inserted inside the wire. This so called space clamp the potential alongthe entire axon spatially uniform, similar to the situation occurring in a patch of membrane.



142 Christof Koch, Aug-20-97This, together with voltage clamping the membrane and the usage of pharmacological agentsto block various currents, enabled Hodgkin and Huxley to dissect the membrane current intoits constitutive components. The total membrane current is the sum of the ionic currentsand the capacitive current: Im(t) = Iionic(t) + CmdV (t)dt : (6.1)With the help of these tools, Hodgkin and Huxley (1952a,b,c) carried out a large numberof experiments, which lead them to postulate the following phenomenological model of theevents underlying the generation of the action potential in the squid giant axon (Fig. 6.2;Hodgkin and Huxley, 1952d)1.(i) The action potential involves two major, voltage-dependent ionic conductances, asodium conductance, GNa, and a potassium conductance, GK. They are indepen-dent from each other. A third, smaller so-called \leak" conductance (which we termGm), is independent of the membrane potential. The total ionic current owing is thesum of a sodium, a potassium and the leak current:Iionic = INa + IK + Ileak : (6.2)(ii) The individual ionic currents Ii(t) are linearly related to the driving potential viaOhm's law: Ii(t) = Gi(V (t); t)(V (t)� Ei) ; (6.3)where the ionic reversal potential Ei is given by Nernst's equation for the appropriateionic species. Depending on the balance between the concentration di�erence of theions and the electrical �eld across the membrane separating the intra- from the extra-cellular cytoplasm, each ionic species has such as associated ionic battery (see eq. 4.3).Conceptually, we can use the equivalent circuit shown in Fig. 6.2 to describe the axonalmembrane.(iii) Each of the two ionic conductances is expressed as a maximum conductance, GNa andGK, multiplied by a numerical coe�cient representing the fraction of the maximumconductance actually open. These numbers are functions of one or more �ctive gatingparticles Hodgkin and Huxley introduced to describe the dynamics of the conductances.In their original model, they talked about activating and inactivating gating particles.Each gating particle can be in one of two possible states, open or close, depending ontime and on the membrane potential. In order for the conductance to open, all of thesegating particles must be open simultaneously. The entire kinetic properties of theirmodel is contained in these variables. We will consider the physical and molecularinterpretation of these gating particles in terms of numerous, all-or-none, microscopicionic channels in the following chapter.1Following our convention, we should express Im as im, since these are currents per unit area. We herefollow the established precedent and use capitalized symbols.



Hodgkin-Huxley Model 143
Gm

V rest

GK

E K

GNa

E Na

Cm

Figure 6.2: Electrical Circuit for a Patch of Squid AxonHodgkin and Huxley modeled the membrane of the squid axon using four parallel branches:two passive ones (the membrane capacitance Cm and the leak conductance Gm = 1=Rm) andtwo time- and voltage-dependent ones representing the sodium and the potassium channels.6.2 Activation and Inactivation StatesLet us specify how these activation and inactivation states determine the two ionic currents.This is important, since the vast majority of state-of-the-art ionic models are formulated interms of such particles.6.2.1 The Potassium Current IKHodgkin and Huxley (1952d) model the potassium current asIK = GKn4(V � EK) ; (6.4)where the maximal conductance GK = 36 mS/cm2 and the potassium battery is EK =-12 mVrelative to the resting potential of the axon. n describes the state of a �ctional activationparticle, is a dimensionless number between 0 and 1. Note that with today's physiologicalconventions, IK as inward current is always positive (for V � EK ; see Fig. 6.5).Chapter 8 treats the underlying microscopic and stochastic nature associated with themacroscopic and deterministic current. Let us for now develop our intuition by assumingthat the probability of �nding one activation particle in its permissive or open state is n(and it will be with probability 1 � n in its non-permissive or close state where no currentows through the conductance). Eq. 6.4 states that in order for the channel to be open, thefour gating particles must simultaneously be in their open states. We can also think of n asthe proportion of particles in their permissive state; potassium current can only ow if fourparticles are in their permissive state.



144 Christof Koch, Aug-20-97If we assume that only these two states exist (for a single particle) and that the transitionfrom one to the other is governed by �rst-order kinetics, we can write down the followingreaction scheme: n �n�*)��n 1� n : (6.5)�n (resp. �n) is a voltage-dependent rate constant (in units of 1/sec), specifying how manytransitions occur between the closed and the open state (resp. from the open to the closedstate). Mathematically, this scheme corresponds to a �rst-order di�erential equation:dndt = �n(V )(1� n)� �n(V )n : (6.6)The key to Hodgkin and Huxley's model|as well as the most demanding part of theirinvestigation|was the quantitative description of the voltage-dependency of the rate con-stants. Instead of using rate constants �n and �n, we can re-express eq. 6.6 in terms of avoltage-dependent time constant �n(V ) and steady-state value n1(V ) withdndt = n1 � n�n ; (6.7)with �n = 1�n + �n ; (6.8)and n1 = �n�n + �n : (6.9)Both descriptions, in terms of either rate constants �n and �n or in terms of a time constant�n and steady-state variable n1, are equivalent. While Hodgkin and Huxely used the formerwe will use the latter, due to its simpler physical interpretation.One of the most striking properties of the squid membrane is the steepness of the relationbetween conductance and membrane potential. Below about 20 mV, the steady-state potas-sium membrane conductance GK increases e-fold by varying V by 4.8 mV, while the voltagesensitivity of the sodium conductance is even higher (an e-fold change for every 3.9 mV). Forhigher levels of depolarization, saturation in the membrane conductance sets in (Hodgkinand Huxley, 1952a). This steep relationship must be reected in the voltage dependency ofthe rate constants. Hodgkin and Huxley (1952d) approximated the voltage-dependencies ofthe rate constants by �n(V ) = 10� V100(e(10�V )=10 � 1) ; (6.10)and �n(V ) = 0:125e�V=80 ; (6.11)where V is the membrane potential relative to the axon's resting potential in units of milli-volt. Fig. 6.3 shows the voltage-dependency of the associated time constant and steady-statevalue of the potassium activation variable. While �n has a bell-shaped dependency, n1 is



Hodgkin-Huxley Model 145a monotonic increasing function of the membrane potential. The curve relating the steady-state potassium conductance to the membrane potential is an even steeper function, given thefourth power relationship between GK and n. This is a hallmark of almost all ionic conduc-tances: depolarizing the membrane potential increase their e�ective conductance2. One ofthe few exceptions is the appropriately named anomalous recti�er current, IAR (frequentlyalso termed inward recti�er) that turns on with increasing membrane hyperpolarization(Spain et al., 1987).The fraction of the steady-state potassium conductance open at any particular voltageV , i.e. for t!1, is identical to n1(V )4. At Vrest this number is very small, n1(0)4 =0.01,that is only about 1% of the total potassium conductance is activated! Using the voltage-clamp setup, we now move as rapidly as possible the membrane potential to V and clamp itthere. The evolution of the potassium conductance is dictated by the di�erential eq. 6.7:n(t)4 = �n1 � (n1 � n0)e�t=�n(V )�4 ; (6.12)where n0 is the initial value of the potassium activation, n0 = n1(0)=0.32 and n1 its �nalvalue, n1 = n1(V ). The time course of any one activation variable follows an exponential,a reection of the underlying assumption of a �rst-order kinetic scheme. The time courseof the fourth power of n(t) is plotted on the right hand of Fig. 6.4 following a sudden shiftin the membrane potential, from rest to the various voltage values indicated. Superimposedare the experimentally measured values of the potassium conductance. It is remarkable howwell the points fall onto the curve. Upon stepping back to the original membrane potential,n slowly relaxes back to its original low value.6.2.2 The Sodium Current INaAs can be seen on the left hand side of Fig. 6.4, the dynamics of the sodium conductancethat we will explore now are substantially more complex.In order to �t the kinetic behavior of the sodium current, Hodgkin and Huxley had topostulate the existence of a sodium activation particle m as well as an inactivation particleh: INa = GNam3h(V � ENa) ; (6.13)where the maximal sodium conductance GNa = 120 mS/cm2 and the sodium reversal po-tential ENa =115 mV relative to the axon's resting potential. m and h are dimensionlessnumbers, with 0 � m; h � 1. By our convention the sodium current is negative, i.e. inward,throughout the physiological voltage range (for V < ENa; see Fig. 6.5).The amplitude of the sodium current is contingent on four hypothetical gating particlesmaking independent, �rst-order transitions between an open and a closed state. Since theseparticles are independent, the probability for the three m and the one h particle to exist inthis state is m3h. Notice that h is the probability that the inactivating particle is not in2Whether or not the associated ionic current also increases depends on the relevant ionic reversal potential(eq. 6.3).
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Figure 6.3: Voltage Dependency of the Gating ParticlesTime constants (A) and steady-state activation and inactivation (B) as a function of the relativemembrane potential V for sodium activation m (solid line) and inactivation h (dashed line) andpotassium activation n (dotted line). The steady-state sodium inactivation h1 is a monotonicdecreasing function of V , while the activation variables n1 and m1 increase with the membranevoltage. The activation of the sodium and potassium conductances are much steeper functions ofthe voltage, due to the power-law relationship between the activation variables and the conduc-tances. Around rest, GNa increases e-fold for every 3.9 mV and GK for every 4.8 mV. Activatingthe sodium conductance occurs approximately ten times faster than inactivating sodium or acti-vating the potassium conductance. The time constants are slowest around the resting potential.
its inactivating state. Formally, the temporal change of these particles is described by two
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Figure 6.4: K+ and Na+ Conductances During a Voltage StepThe experimentally recorded (circles) and the theoretically calculated (smooth curves)changes in GNa and GK in the squid giant axon at 6.3� C during depolarizing volt-age steps away the resting potential (which is here, as throughout this chapter, setto zero). For large voltage changes, GNa briey increases before it decays backto zero (due to inactivation), while GK remains activated. From Hodgkin (1958).�rst-order di�erential equations:dmdt = �m(V )(1�m)� �m(V )m : (6.14)and dhdt = �h(V )(1� h)� �h(V )h : (6.15)Empirically, Hodgkin and Huxley derived the following equations for the rate constants�m(V ) = 25� V10(e(25�V )=10 � 1) (6.16)�m(V ) = 4e�V=18 (6.17)�h(V ) = 0:07e�V=20 (6.18)�h(V ) = 1e(30�V )=10 + 1 : (6.19)



148 Christof Koch, Aug-20-97The associated time constants and steady-state variables are plotted in Fig. 6.3 as a functionof voltage. Similar to before, both �m3 and �h are bell-shaped curves. While m1 is amonotonic increasing function of V as expected of an activation variable, h1 decreases withincreasing membrane depolarization, the de�ning feature of an inactivating particle. It isalso important to note the ten-fold di�erence in the kinetics of activation and inactivation atall potentials. Without inactivation, the sodium conductance would increase in response to adepolarizing voltage step within a millisecond to its new value and remain there, and wouldequally rapidly decay back to its old value once the voltage clamp command is removed. Wedefer the probabilistic interpretation of the rate constants to chapter 8.The fraction of the steady-state sodium conductance open at rest is less than 1% of thepeak sodium conductance. Inspection of Fig. 6.3 immediately reveals the reason: for voltagesbelow or close to the resting potential of the axon, the activation variable m is close to zerowhile at positive potentials the inactivation variable h is almost zero. Thus, the steady-statesodium current GNam31h1(V � ENa), also known as the window current, is always verysmall. The secret to obtaining the large sodium current needed to rapidly depolarize themembrane lies in the temporal dynamics of m and h. At values of the membrane close to theresting potential, h takes on a value close to one. When a sudden depolarizing voltage step isimposed onto the membrane as in Fig. 6.4, m changes within a fraction of a millisecond to itsnew value close to one, while h requires �ve or more milliseconds to relax from its previous,high value to its new and much smaller value. In other words, two processes control thesodium conductance: activation is the rapid process that increases GNa upon depolarizationand outpaces inactivation, the much slower process that reduces GNa upon depolarization.6.2.3 The Complete ModelSimilar to most other biological membranes, the axonal membrane contains a voltage-independent \leak" conductance, Gm, which does not depend on the applied voltage andremains constant over time. The value measured by Hodgkin and Huxley, Gm = 0.3 mS/cm2,corresponds to a passive membrane resistivity of Rm = 3333 
cm2. The passive componentalso has a reversal potential associated with it. Hodgkin and Huxley did not explicitly mea-sure Vrest, but adjusted it so that the total membrane current at the resting potential V =0 iszero. In other words, Vrest was de�ned via the equation GNa(0)ENa+GK(0)EK+GmVrest =0,and comes out to be +10.613 mV. The membrane capacity Cm = 1 �Fcm�2. At the rest-ing potential, the e�ective membrane resistance due to the presence of the sum of the leak,the potassium and the (tiny) sodium conductances amounts to 857 
cm2, equivalent to ane�ective \passive" membrane time constant of about 0.85 msec.We can now write down a single equation for all the currents owing across a patch ofaxonal membraneCmdVdt = GNam3h(ENa � V ) +GKn4(EK � V ) +Gm(Vrest � V ) + Iinj(t) ; (6.20)3Note that the voltage-dependent membrane time constant for the activation variable, �m, has the samesymbol as the passive membrane time constant. When in doubt, we will refer to the latter simply as � .



Hodgkin-Huxley Model 149where Iinj is the current that is injected via an intracellular electrode. This nonlinear dif-ferential equation, in addition to the three, ordinary, linear, �rst-order di�erential equationsspecifying the evolution of the rate constants (as well as their voltage-dependencies), con-stitutes the four-dimensional Hodgkin and Huxley model for the space-clamped axon or fora small patch of membrane. Throughout the book, we shall refer to eq. 6.20, in combina-tion with the rate constants (eqs. 6.7, 14 and 15) at 6.3� C as the standard Hodgkin-Huxleymembrane patch model. In our simulations of these equations, we solve eq. 6.20 for an equipo-tential 30� 30�� �m2 patch of squid axonal membrane and therefore express Im in units ofnA (and not as current density).We will explain in the following sections how this model reproduces the stereotypedsequence of membrane events that give rise to the initiation and propagation of all-or-noneaction potentials.6.3 Action Potential GenerationOne of the most remarkable aspect of the axonal membrane is its propensity to respond ineither of two ways to brief pulses of depolarizing inward current. If the amplitude of thepulse is below a given threshold, the membrane will depolarize slightly but will return to themembrane's resting potential, while larger currents will induce a pulse-like action potential,whose overall shape is relatively independent of the stimulus required to trigger it.Consider the e�ect of delivering a short (0.5 msec) inward current pulse Iinj(t) of 0.35 nAamplitude to the membrane (Fig. 6.5). The injected current charges up the membranecapacitance, depolarizing the membrane in the process. The smaller this capacitance, thefaster the potential will rise. The depolarization has the e�ect of slightly increasing mand n, i.e. increasing both sodium and potassium activation, but decreasing h, that isdecreasing potassium inactivation. Because the time constant of sodium activation is morethan one order of magnitude faster than �n and �h at these voltages, we can consider thelater two for the moment to be stationary. But the sodium conductance, GNa, will increasesomewhat. Because the membrane is depolarized from rest, the driving potential for thepotassium current, V � EK, has also increased. The concomitant increase in IK outweighsthe increase in INa due to the increase in GNa and the overall current is outward, drivingthe axon's potential back toward the resting potential. The membrane potential will slightlyundershoot and then overshoot until it �nally returns to Vrest. The oscillatory responsearound the resting potential can be attributed to the small-signal behavior of the potassiumconductance acting phenomenologically similar to an inductance (see chapter 10 for a furtherdiscussion of this).If the amplitude of the current pulse is slightly increased to 0.4 nA, the depolarizationdue to the voltage-independent membrane components will reach a point where the amountof INa generated exceeds the amount of IK. At this point, the membrane voltage undergoesa run-away reaction: the additional INa depolarizes the membrane, further increasing mthat increases INa and further membrane depolarization. Given the almost instantaneousdynamics of sodium activation (�m is � 0.1-0.2 msec at these potentials), the inrushing
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Figure 6.5: Hodgkin-Huxley Action PotentialComputed action potential in response to a 0.5 msec current pulse of 0.4 nA amplitude (solid lines)in comparison to a subtreshold response following a 0.35 nA current pulse (dashed lines). (A)Time-course of the two ionic currents. Note their large size compared to the stimulating current.(B) The membrane potential in response to threshold and subthreshold stimuli. The injected cur-rent charges up the membrane capacity (with an e�ective membrane time constant � =0.85 msec),enabeling su�cient INa to be recruited to outweigh the increase in IK (due to the increase in drivingpotential). The smaller current pulse fails to trigger an action potential, but causes a depolariza-tion followed by a small hyperpolarization due to activation of IK . The lower panel (C) shows thedynamics of all three gating particles. Sodium activation m changes much more rapidly than eitherh or n. The long time course of potassium activation n explains why the membrane potential takes12 msec after the potential has �rst dipped below the resting potential to return to baseline level.



Hodgkin-Huxley Model 151sodium current moves the membrane potential within a fraction of a millisecond to 0 mVand beyond. In the absence of sodium inactivation and potassium activation, this positivefeedback process would continue until the membrane would come to rest at ENa. As wesaw already in Fig. 6.4, after a delay both the slower sodium inactivation variable h aswell as the potassium activation n will turn on (explaining why IK is also called the delayedrecti�er current or IDR). Sodium inactivation acts to directly decrease the amount of sodiumconductance available, while the activation of the potassium conductance tends to try tobring the axon's membrane potential toward EK by increasing IK . Thus, both processescause the membrane potential to dip down from its peak. Because the total sodium currentquickly falls to zero after 1 msec, but IK persists longer at small amplitudes (not readilyvisible in Fig. 6.5) the membrane potential is depressed to below its resting level, that is theaxon hyperpolarizes. At these low potentials, eventually potassium activation switches o�,returning the system to its initial con�guration as V approaches the resting potential.6.3.1 The Voltage Threshold for Spike InitiationWhat are the exact conditions under which a spike is initiated? Does the voltage have toexceed a particular threshold value Vth, or does a minimal amount of current Ith have tobe injected, or does a certain amount of electrical charge Qth have to be delivered to themembrane in order to initiate spiking? These possibilities and more have been discussed inthe literature and experimental evidence exists to support all of these views under di�erentcircumstances (Hodgkin and Rushton, 1946; Cooley, Dodge and Cohen, 1965; Noble andStein, 1966; Cole, 1972; Rinzel, 1978a; for a thorough discussion see Jack et al., 1975).Because the squid axon is not a good model for spike encoding in central neurons, we willdefer a more detailed discussion of this issue to sections 17.3 and 19.1. We here limit ourselvesto considering spike initiation in an idealized nonlinear membrane, without dealing with thecomplications of cable structures (such as the axon).To answer this question, we need to consider the current-voltage relationship of the squidaxonal membrane. Because we are interested in rapid synaptic inputs, we assume thatthe rise-time of the synaptic current is faster than the e�ective passive time constant, � =0.85 msec and make use of the observation that the dynamics of sodium activation m isvery rapid (the associated time constant is always less than 0.5 msec) and at least a factorof ten faster than sodium inactivation h and potassium activation n (see Fig. 6.3). Withthese observations in mind, we ask what happens if the input very rapidly depolarizes themembrane to a new value V ? Let us estimate the current that will ow with the help of theinstantaneous current-voltage relationship I0(V ) (Fig. 6.6).I0 is given by the sum of the ionic and the leak currents. We approximate the associatedsodium and potassium conductances by assuming that h and n have not had time to changefrom the value they had at the resting potential V =0, while m adjust instantaneously toits new value at V . In other words,I0(V ) = GNam(V )3h(0)(V � ENa) +GKn(0)4(V � EK) +Gm(V � Vrest) : (6.21)



152 Christof Koch, Aug-20-97Fig. 6.6 shows the inverted U-form shape of I0 in the neighborhood of the resting potential,as well as its three ionic components, INa; IK and Ileak.In the absence of any input, the system rests at V =0. If a small, depolarizing voltagestep is applied, the system is displaced to the right, generating a small, positive current. Thiscurrent is outward since the increase in m (increasing the amplitude of INa) is outweighedby the increase in the driving potential V � EK (increasing IK). This forces the membranepotential back down towards the resting potential: the voltage trajectory corresponds toa subthreshold input. Similarly, if an hyperpolarizing current step is injected, moving thesystem to below V =0, a negative, inward current is generated, pulling the membrane backup towards Vrest. The slope of the I-V curve around the resting potential, @I=@V , termed themembrane slope conductance (for a substantial discussion of this concept, see section 17.1.2)is positive. That is, the point V =0 is a stable attractor (for these and related notions, wedefer the reader to the following chapter).I0(V ) has a second zero-crossing at V = Vth � 2.5 mV. If an input moves the membranepotential to exactly Vth, no current ows and the system remains at Vth (Fig. 6.6). Becausethe slope conductance is negative, the point is unstable and an arbitrarily small perturbationwill carry the system away from the zero-crossing. A negative perturbation will carry thesystem back to Vrest. Conversely, a positive voltage displacement, no matter how minute,causes a small, inward current to ow that further depolarizes the membrane (due to thenegative slope conductance), leading in turn to a larger inward current and so on. Themembrane potential rapidly increases to above zero, that is an action potential is triggered.During this phase, very large inward currents are generated, far exceeding the amplitude ofthe modest stimulus current (recall that around these potentials, INa increases e-fold every3.9 mV). For the patch of squid membrane simulated here (where the current scales linearlywith the area of the patch), the peak of INa is about 23 nA.This qualitative account of the origin of the voltage threshold for an active patch ofmembrane argues that in order for an action potential to be initiated, the net inward currentmust be negative. For rapid input, this �rst occurs at V = Vth. This analysis was based onthe rather restrictive assumption thatm changes instantaneously, while h and n remain �xed.In practice, neither assumption is perfect. Indeed, while our argument predicts Vth =2.5 mV,the voltage threshold for spike initiation for rapid EPSPs for the Hodgkin-Huxley equationis, in fact, equal to 6.85 mV (Noble and Stein, 1966). As discussed in section 17.3, reachinga particular value of the voltage for a rapid input in a single compartment is equivalent withrapidly dumping a threshold amount of charge Qth into the system.Applying a current step that increases very slowly in amplitude|allowing the system toalways relax to its stationary state|prevents any substantial sodium current from owingand will therefore not cause spiking. Thus, not only does a given voltage threshold hasto be reached and exceeded but also within a given time window. We take up this issue insection 17.3 in the context of our full pyramidal cell model and in section 19.1 to explore howVth is a�ected by the cable structure. For the pyramidal cell model, both Vth as well as Ithcan be estimated quite accurately from the sustained and the instantaneous current-voltagerelationships.
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Figure 6.6: Current-Voltage Relationship Around RestThe instantaneous I-V relationship I0 associated with our standard patch of squid axon membraneand its three components: I0 = INa + IK + Ileak (eq. 6.21). Because m changes much fasterthan either h or n for rapid inputs, we computed GNa and GK under the assumption that madapts instantaneously to its new value at V , while h and n remain at their resting values. I0crosses the voltage axis at two points: a stable point at V =0 and an unstable one at Vth �2.5 mV. Under these idealized conditions, any input that exceeds Vth will lead to a spike. Forthe \real" equations, m does not change instantaneously and nor do n and h remain stationary;thus, I0 only crudely predicts the voltage threshold which is, in fact, 6.85 mV for rapid synapticinput. Note that I0 is speci�ed in absolute terms and scales with the size of the membrane patch.6.3.2 Refractory PeriodThe nervous system needs to rapidly repolarize the membrane potential following its 100 mVexcursion from the resting potential. Given a speci�c membrane capacitance of 1 �m F/cm2,this amounts to transferring about 6,000 positively charged ions per �m2 of membrane area.The way this is accomplished is by increasing a potassium conductance, GK. This con-ductance remains activated even subsequent to spike polarization (up to 12 msec followingthe peak of the action potential in Fig. 6.5), causing the membrane to undergo a hyperpolar-ization. During this period, it is more di�cult to initiate an action potential than before; themembrane remains in a refractory state. The reason for the reduced ability of the membraneto discharge again is the inactivation of INa (i.e. h is small) and the continuing activationof IK (n only decays slowly).



154 Christof Koch, Aug-20-97This refractory period can be documented by the use of a second current pulse (Fig. 6.7).At t =1 msec a 0.5 msec current pulse is injected into our standard patch of squid axonalmembrane. The amplitude of this pulse, I1 =3.95 nA, is close to the minimal one needed togenerate an action potential. The input causes a spike to be triggered that peaks at around5 msec and repolarizes to V =0 at t =7 msec. This time, at which the membrane potentialstarts to dip below the resting potential (Fig. 6.5), is somewhat arbitrarily assigned to �t =0.Following this point, a second 0.5 msec long current pulse of amplitude I2 is applied �t mseclater. The amplitude of I2 is increased until a second action potential is generated. This�rst occurs at �t =2 msec (that is 2 msec after the membrane potential has repolarized tozero). At this time, I2=I1 =23.7, that is the amplitude of the second pulse must be 23.7times larger than the amplitude of the �rst pulse in order to trigger a spike. Since such largecurrent amplitudes are unphysiological, the membrane is de facto not excitable during thisperiod that is frequently referred to as the absolute refractory period. Up to 11 msec afterrepolarization of the membrane due to the �rst spike is the threshold for initiation of thesecond spike elevated (relative refractory period; Fig. 6.7). This is followed by a brief periodof mild hyperexcitability when a spike can be elicited by a slightly (15%) smaller currentthan under resting conditions.>From a computational point of view, it is important to realize that the threshold behaviorof the Hodgkin and Huxley model depends on the previous spiking history of the membrane.In the squid axon, as in most axons, the threshold rises only briey, returning to baselinelevels after 20 msec or less. As warming the axon to body temperatures speeds up the ratesof gating two- to fourfold4, the minimal separation times is expected to be only 1-2 msecfor axons in warm blooded animals. Nerve cells|as compared to axons| often display amuch longer increase in their e�ective spiking threshold, depending on the number of actionpotentials generated within the last 100 or more milliseconds (Raymond, 1979). Section 9.2.3will treat the biophysical mechanism underlying this short-term �ring frequency adaptationin more detail.
4A crucial parameter in determining the dynamics of the action potential is the temperature T . As �rstmentioned in a footnote in section 4.6.1, if the temperature is reduced, the rate at which the ionic channelsunderlying the action potential open or close slows down, while the peak conductance remains unchanged.Hodgkin and Huxley recorded most of their data at 6.3� C and the rate constants are expressed at thesetemperatures (eqs. 6.10, 11 and 6.16 through 6.19). To obtain the action potential at any other temperatureT , all �'s and �'s all need to be corrected by Q(T�6:3)=1010 , with a Q10 between 2� 4 (Hodgkin, Huxley andKatz, 1952; Beam and Donaldson, 1983; for a de�nition of Q10 see the footnote in section 4.6). The Q10for the peak conductances is a modest 1.3. As the temperature is increased, the upstroke, i.e. the rate atwhich the voltage rises during the rapid, depolarizing phase of the action potential, increases, because thespeed at which INa is activated increases. At the same time, both sodium inactivation as well as potassiumactivation increases. Altogether, the total duration of the spike decreases. At temperatures above 33� C nospike is generated (Hodgkin and Katz, 1949; of course, the squid axon lives in far more frigid waters thanthese balmy temperatures).
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Figure 6.7: Refractory PeriodA 0.5 msec brief current pulse of I1 =0.4 nA amplitude causes an action potential (Fig. 6.5).A second, equally brief, pulse of amplitude I2 is injected �t msec after the membrane potentialdue to the �rst spike has reached V =0 and is about to hyperpolarize the membrane. For eachvalue of �t; I2 is increased until a second spike is generated (see the inset for �t =10 msec).The ratio I2=I1 of the two pulses is here plotted as a function of �t. For several millisecondsfollowing repolarization, the membrane is practically inexcitable since such large currents are un-physiological (absolute refractory period). Subsequently, a spike can be generated but it requiresa larger current input (relative refractory period). This is followed by a brief period of reducedthreshold (hyperexcitability). No more interactions are observed beyond about �t =18 msec.6.4 Relating Firing Frequency to Sustained CurrentInputWhat happens if a long-lasting current step of constant amplitude is injected into the space-clamped axon (Agin, 1964; Cooley, Dodge and Cohen, 1965; Stein, 1967a)? If the currentis too small, it will give rise to a persistent sub-threshold depolarization (Fig. 6.8). Plottingthe steady-state membrane depolarization as a function of the applied membrane current(Fig. 6.9A) reveals the linear relationship between the two. If the input is of su�cientamplitude to exceed the threshold, the membrane will generate a single action potential(Fig. 6.8). The minimal amount of sustained current needed to generate at least one actionpotential (but not necessarily an in�nite train of spikes) is called rheobase (Cole, 1972). Forour standard membrane patch, rheobase corresponds to 0.065 nA (this current is obviously far



156 Christof Koch, Aug-20-97less than the amplitude of the brief current pulse used previously). After the spike has beentrigged and following the afterhyperpolarization, V (t) stabilizes at around 2 mV positive tothe resting potential, limiting the removal of sodium inactivation as well as enhancing IK.As the current amplitude is increased, the o�set depolarization following the action potentialand its hyperpolarization increases until, when the amplitude of the current step is aboutthree times rheobase (0.175 nA), a second action potential is initiated. At around 0.18 nA(I1 in Fig. 6.9A) the membrane will generate an inde�nite train of spikes at �xed intervals:the membrane potential between action potentials always slowly creeps past Vth and thecycle begins anew: the system travels on a stable limit cycle. In a noiseless situation, theinterval between consecutive spikes is constant and the cell behaves as a periodic oscillatorswith constant frequency.
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t (msec)Figure 6.8: Repetitive SpikingVoltage trajectories in response to current steps of various amplitudes in the standard patchof squid axonal membrane. The minimum sustained current necessary to initiate a spike,termed rheobase, is 0.065 nA. In order for the membrane to spike inde�nitely, larger currentsmust be used. Experimentally, the squid axon usually stops �ring after a few seconds due tosecondary inactivation processes not modeled by the Hodgkin and Huxley (1952d) equations.Fig. 6.9A shows the associated steady-state voltage-current relationship. Experimentally,it can be obtained by clamping the membrane potential to a particular value V and bymeasuring the resultant clamp current I. The equations generate in�nite trains of actionpotentials for I � I1 (dashed line in Fig. 6.9A).If the current amplitude is further increased, the interspike intervals begin to decreaseand the spiking frequency increases. Fig. 6.9B shows the relationship between the amplitude



Hodgkin-Huxley Model 157of the injected current and the spiking frequency around threshold and Fig. 6.10A over alarger current range. It is referred to as the frequency-current or f-I curve. Overall, there isa fairly limited range of frequencies at which the membrane �res, between 53 and 138 Hz.If a current at the upper amplitude range is injected in the axon, the membrane fails torepolarize su�ciently between spikes to relieve sodium inactivation. Thus, although themembrane potential does show oscillatory behavior, no true action potentials are generated.
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Figure 6.9: Sustained Spiking in the Hodgkin-Huxley Equations(A) Steady-state voltage-current relationship and (B) the f-I or discharge curve as a func-tion of the amplitude of the sustained current I associated with the Hodgkin-Huxley equa-tions for a patch of squid axonal membrane. For currents less than 0.18 nA, the mem-brane responds by a sustained depolarization (solid curve). At I1, the system loses its sta-bility and generates an in�nite train of action potentials: it moves along a stable limit cy-cle (dashed line). A characteristic feature of the squid membrane is its abrupt onset of �r-ing with non-zero oscillation frequency. The steady-state V-I curve can also be viewed asthe sum of all steady-state ionic currents owing at any particular membrane potential Vm.Some authors (Hagiwara and Oomura, 1958) have been unable to reproduce maintaining�ring experimentally (see, however, Chapman, 1966). This is most likely due to secondary



158 Christof Koch, Aug-20-97inactivation mechanisms which are not treated by the Hodgkin and Huxley equations. Yetfor shorter times, the theoretical model of Hodgkin and Huxley makes reasonably satisfactorypredictions of the behavior of the space-clamped axon (for a detailed comparison betweenexperimental observations and theoretical predictions see Guttman and Barnhill, 1970), inparticular with respect to the small dynamic range of �ring frequencies supported by theaxonal membrane and the abrupt onset of spiking at a high �ring frequency. The f-I curvecan be well approximated by either an square root or a logarithmic relationship betweenfrequency and injected current (Agin, 1964; see Fig. 6.10).In general, the f-I curves of neurons show a sigmoidal behavior for large input values.This justi�es the introduction of a smooth, sigmoidal-type of nonlinearity mimicking theneuronal input-output transduction process in continuously valued neural network models(Hop�eld, 1984). It is important to keep in mind that the paradigm under which the f-Icurves are obtained, sustained current input, represents only a very crude approximation tothe dynamic events occurring during synaptic bombardment of a cell leading to very complexspike discharge patterns (see chapter 15).An important feature of the Hodgkin and Huxley model is that the frequency at theonset of repetitive activity has a well-de�ned non-zero minimum (about 53 Hz at 6.3� C;Fig. 6.10B). The membrane is not able to sustain oscillations at lower frequencies. Thisbehavior, generated by a so-called Hopf bifurcation mechanism, is generic to a large classof oscillators occurring in nonlinear di�erential equations (Cronin, 1987; Rinzel and Ermen-trout, 1989) and will be treated in more detail in the following chapter.As �rst explicitly simulated by Stein (1967b), adding random variability to the input canincrease the bandwidth of the axon by e�ectively increasing the range within which the mem-brane can generate action potentials. If the input current is made to vary around its meanwith some variance, reecting for instance the spontaneous release of synaptic vesicles, thesharp discontinuity in the �ring frequency at low current amplitudes is eliminated, since evenwith an input current that is on average below threshold, the stimulus will become strongenough to generate an impulse with a �nite, though small, average frequency. Dependingon the level of noise, the e�ective minimal �ring frequency can be reduced to close to zero(Fig. 6.10B). A similar linearization behavior can be obtained if the continuous, determin-istic and macroscopic currents inherent in the Hodgkin-Huxley equations are approximatedby the underlying discrete, stochastic and microscopic channels (Skaugen and Walloe, 1979;see section 8.3).Adding noise to a quantized signal to reduce the e�ect of this discretization is a standardtechnique in engineering known as dithering or stochastic linearization (Gammaitoni, 1995;Stemmler, 1996).A large number of neurons can generate repetitive spike trains with arbitrarily smallfrequencies. As �rst shown by Connor and Stevens (1971c) in their Hodgkin and Huxley-like model of a gastropod nerve cell, addition of a transient, inactivating potassium current(termed the IA current) enables the cell to respond to very small sustained input currentswith a maintained discharge of very low frequency (this topic will be further pursued insection 7.2.2). Such low �ring frequency are also supported by pyramidal cells (Fig. 9.7).
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Figure 6.10: The Hodgkin-Huxley f-I curve and Noise(A) The relationship between the amplitude of an injected current step and the frequency of theresultant sustained discharge of action potentials (f-I curve) for a membrane patch of squid axonat 6.3� C (solid line) and its numerical �t (dashed line) by f = 33:2 log I + 106. Superimposedin bold is the f-I curve for the standard squid axon cable (using normalized current). Notice thevery limited bandwidth of axonal �ring. (B) The f-I curve for the membrane patch case aroundits threshold (rheobase) in the presence of noise. White (2000 Hz band-limited) current noisewhose amplitude is Gaussian distributed with zero mean current is added to the current stim-ulus. In the absence of any noise (solid line) the f-I curve shows abrupt onset of spiking. Thee�ect of noise (the lower dashed curve has a standard deviation of 0.05 nA and the upper dottedcurve of 0.1 nA) is to linearize the threshold behavior and to increase the bandwidth of transmis-sion (stochastic linearization). Linear f-I curves are also obtained when replacing the continuousand deterministic Hodgkin-Huxley currents by discrete and stochastic channels (see section 8.3).6.5 Action Potential Propagation Along the AxonOnce the threshold for excitation has been exceeded, the all-or-none action potential canpropagate from the stimulus site to other areas of the axon. The hypothesis that this



160 Christof Koch, Aug-20-97propagation is mediated by cable currents owing from excited to neighbouring, non-excitedregions was suggested already around the turn of the century by Hermann (1899). It wasnot until Hodgkin (1937) that direct experimental proof became available. A quantitativetheory of this propagation had to await Hodgkin and Huxley's 1952 study. Because thishas been a very well explored chapter in the history of biophysics, we will be brief here,only summarizing the salient points. Chapter 10 in Jack et al. (1975) provides a deep andthorough coverage of nonlinear cable theory as applied to the conduction of action potentials.Section 19.1 will deal with how cable structures, such as an in�nite cylinder, a�ect the voltagethreshold for spike initiation.6.5.1 The Empirical Determination of the Propagation VelocityThe equivalent electrical circuit replicates the patch of sodium, potassium and leak conduc-tances and batteries of Fig. 6.2 along the cable in a fashion we are already familiar withfrom the passive cable (Fig. 6.12). Eq. 2.5 speci�es the relationship between the membranecurrent (per unit length) and the voltage along the cable:im = 1ra @2V@x2 : (6.22)In eq. 6.20, we derived the membrane current (per unit area) owing in a patch of axonalmembrane. Combining the two with the appropriate attention to scaling factors leads toan equation relating the potential along the axon to the electrical property of the activemembrane:d4Ri @2V@x2 = Cm@V@t +GNam3h(V � ENa) +GKn4(V � EK) +Gm(V � Vrest) ; (6.23)where d is the diameter of the axon. Hodgkin and Huxley (1952d) used a d =0.476 mm thickaxon in their calculations and a value of Ri = 35.4 
cm. This nonlinear partial di�erentialequation, in conjunction with the three equations describing the dynamics of m; h and nand the appropriate initial and boundary conditions, constitutes the complete Hodgkin andHuxley model.This type of second-order equation, for which no general, analytical solution is known, iscalled a reaction-di�usion equation, because it can be put into the form of@V@t = D@2V@x2 + F (V ) ; (6.24)with D > 0 constant. We will meet this type of equation again when considering thedynamics of intracellular calcium (see chapter ??). Under certain conditions, it has wave-like solutions.Because Hodgkin and Huxley only had access to a very primitive hand calculator, theycould not directly solve eq. 6.23. Instead, they considered a particular solution to theseequations. Since they observed that the action potential propagated along the axon without
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Figure 6.11: The Local Circuit Current in the Squid AxonIllustration of the events occuring in the squid axon during the propagation of an action potential.Since the spike behaves like a wave traveling at constant velocity, these two panels can be thoughtof as either showing the voltage and currents in time at one location or as providing a snapshot ofthe state of the axon at one particular instant (see the space/time axes at the bottom). (A) Thedistribution of the voltage (left scale) or the number of open channels (right scale) as inferred fromthe Hodgkin and Huxley model at 18.5� C. (B) The local circuit currents that spread from an ex-cited patch of the axon to neighbouring regions bringing them above threshold, thereby propagatingthe action potential. The diameter of the axon (0.476 mm) is not drawn to scale. >From Hille (1992).changing its shape, they postulated the existence of a wave solution to this equation, in whichthe action potential travels with constant velocity u along the axon, i.e. V (x; t) = V (x�ut).Taking the second spatial and temporal derivative of this expression and using the chain ruleleads to a second-order hyperbolic partial di�erential equation@2V@x2 = 1u2 @2V@t2 : (6.25)
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Figure 6.12: Electrical Circuit of the Squid Giant AxonOne-dimensional cable model of the squid giant axon. The structure of the ca-ble is as in the passive case (Fig. 2.2B), with the RC membrane components aug-mented with circuit elements modeling the sodium and potassium current (Fig. 6.2).Replacing the second spatial derivative term in eq. 6.23 with this expression yields1K d2Vdt2 = dVdt + IiCm ; (6.26)with K = 4Riu2Cm=d and Ii a shorthand for the two ionic and the leak current. Eq. 6.26is an ordinary second-order di�erential equation, whose solution is much easier to computethan the solution to the full-blown partial di�erential equation. It does, require, though, avalue for u. By a laborious trial and error procedure, Hodgkin and Huxley iteratively solvedthis equation until they found a value of u leading to a stable propagating wave solution. Ina truly remarkable test of the power of their model, they estimated 18.8 m/sec (at 18.3� C)for the velocity at which the spike propagates along the squid giant axon, a value within 10%of the experimental value of 21.2 m/sec. This is all the more remarkable, given that theirmodel is based on voltage- and spaced-clamp data, and represents one of the rare instancesin which a neurobiological model makes a successful quantitative prediction!We can establish the dependency of the velocity on the diameter of the �ber using thefollowing argumentation. Because both Ii as well as Cm are expressed as current and ca-pacitance per unit membrane area, their ratio is independent of the �ber diameter. Thevoltage across the membrane and its temporal derivatives must also be independent of d.This implies that the constant K in eq. 6.26 must remain invariant to changes in diameter.Assuming that Cm and Ri do not depend on d, we are lead to the conclusion that the velocityu must be u / pd : (6.27)In other words, the propagation velocity in unmyelinated �bers is expected to be proportionalto the square root of the axonal diameter5. Indeed, this predicted relationship is roughlyfollowed in real neurons (see Fig. 6.15; Ritchie, 1995).This implies that if the delay between spike initiation at the cell body and the arrival ofthe spike at the termination of an axon needs to be cut in half, the diameter of the axon5Notice that we derived a similar square-root relationship between diameter and \pseudo-velocity" forthe decremental wave in the case of a passive cable (eq. 2.53).



Hodgkin-Huxley Model 163needs to increase by a factor 4, a heavy price to pay for rapid communication. The premiumput on minimizing propagation delay in long cable structures is most likely the reason thesquid evolved such thick axons. As we will see further below, many axons in vertebratesuse a particular form of electrical insulation, termed myelination, to greatly speed up spikepropagation without a concomitant increase in �ber diameter.It was more than ten years later that Cooley, Dodge and Cohen (1965; see also Cooleyand Dodge, 1966) solved the full partial di�erential eq. 6.23 numerically using an iterativetechnique. Fig. 6.13 displays the voltage trajectory at three di�erent locations along theaxon; at x =0 a short, suprathreshold current pulse charges up the local membrane capaci-tance. This activates the sodium conductance and Na+ ions rush in, initiating the full-blownaction potential (not shown). The local circuit current generated by this spike leads to anexponential rise in the membrane potential in the neighbouring region, known as the \foot"of the action potential. This capacitive current in turn activates the local sodium conduc-tance that will increase rapidly, bringing this region above threshold: the spike propagatesalong the axon. Di�erent from the space-clamped axon where the capacitive current is al-ways equal and opposite to the ionic currents once the stimulus current has stopped owing(eq. 6.20), the time course of current is more complex during the propagated action poten-tial due to the local circuit currents. Because some fraction of the local membrane currentdepolarizes neighbouring segments of the axonal cable (the so- called local circuit currents;see Fig. 6.11), the current amplitude required to trigger at least one action potential is largerthan the current amplitude in the space-clamped case.If the voltage applied to the squid membrane is small enough, one can linearize themembrane, describing its behavior in terms of voltage-independent resistances, capacitancesand inductances. This procedure was �rst carried out by Hodgkin and Huxley (1952d) andwill be discussed in detail in chapter 10. Under these circumstances, a space constant � canbe associated with the \linearized" cable, describing how very small currents are attenuatedalong the axon. At rest, the d.c. space constant for the squid axon is � =5.4 mm, about tentimes larger than its diameter.When long current steps of varying amplitude are injected into the axon, the squid axonresponds with regular, periodic spikes. However, the already small dynamic range of the f-Icurve of the space-clamped axon (Fig. 6.10A) becomes further reduced to a factor of less than1.7 when the the sustained �ring activity in the full axon is considered (from 58 to 96 Hzat 6.3� C). Thus, while the Hodgkin and Huxley model describes to a remarkable degreethe behavior of the squid's giant axon, the equations do not serve as an adequate model forimpulse transduction in nerve cells, most of which have a dynamic range that extends overtwo orders of magnitude.As predicted by Huxley (1959), Cooley and Dodge (1966) found a second solution tothe Hodgkin and Huxley equations. At values of current input very close to the thresholdfor spike initiation, they observed a decremental wave propagating away from the currentsource. This solution quickly dies away to zero potential as x increases and is only observedif the amplitude of the current step is within 10�3 of the threshold current. This also revealsthe fact that the Hodgkin and Huxley model does not possess a strict threshold in the true
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Figure 6.13: Propagating Action PotentialThe solution to the complete Hodgkin and Huxley model for a 5 cm long piece of squid axonfor a brief suprathreshold current pulse delivered to one end of the axon. This pulse generatesan action potential that travels down the cable and is shown here at the origin as well as 2 and3 cm away from the stimulating electrode (solid lines). Notice that the shape of the action po-tential remains invariant due to the nonlinear membrane. The e�ective velocity of the spike is12.3 m/sec (at 6.3� C). If the amplitude of the current pulse is halved, only a local depolarizationis generated (dashed curve) that depolarizes the membrane 2 cm away by a mere 0.5 mV (notshown). This illustrates the dramatic di�erence between active and passive voltage propagation.sense of the word. In other words, there exists a continuous transformation between thesubthreshold and the threshold voltage response. Yet in order to reveal these intermediatesolutions the excitation must be adjusted with a degree of accuracy impossible to achievephysiologically. Practically speaking, given unavoidable noise in any neuronal system, onlythe propagating wave solution (with its associated threshold) plays a signi�cant role inpropagating information along the axon.Cooley and Dodge (1966) also considered what happens if the density of voltage-dependentchannels underlying GNa and GK is attenuated by a factor of � (with 0 � � � 1; the value ofVrest and Gleak were adjusted so that the resting potential and resting conductance were heldconstant). Reducing these conductances is somewhat analogous to the action of certain localanesthetics, such as lidocaine or procaine as used by dentists, in blocking action potentialpropagation. As � is reduced below one, the velocity of propagation as well as the peakamplitude of the spike are reduced. For � <0.26, no uniform wave solution is possible andthe \action potential" decrements with distance.



Hodgkin-Huxley Model 1656.5.2 Nonlinear Wave PropagationSpikes moving down an axon are but one instance of a nonlinear propagating wave. Nonlinear,since in a linear dispersive medium, such as a passive cable, the di�erent Fourier componentsassociated with any particular voltage disturbance will propagate at a di�erent velocity andthe disturbance will lose its shape. This is why propagating spikes and the like are frequentlyreferred to by mathematicians as resulting from nonlinear di�usion. Other examples includesonic shock waves or the digital pulses in an optical cable.Scott (1975) argues for a broad classi�cation of such phenomena into (i) those systems forwhich energy is conserved and which obey a conservation law and (ii) those for which solitarytravelling waves imply a balance between the rate of energy release by some nonlinearity andits consumption.Waves associated with the �rst type of systems are known as solitons and are alwaysbased on energy conservation (Scott, Chu and McLaughlin, 1973). Solitons emerge from abalance between the e�ects of nonlinearity, which tend to draw the wave together, �ghtingdispersion, which tends to spread the pulse out. This imples that solitons can propagateover a range of speeds. Furthermore, they can propagate through each other without anyinterference. Solitons have been observed in ocean waves and play a major role in high-speedoptical �bers.Action potentials are an example of the second type of propagating wave, similar to anordinary burning candle (Scott, 1975). Di�usion of heat down the candle releases wax whichburns to supply the heat. If P is the power (in joules per second) necesssary to feed theame and E the chemical energy stored per unit length of the candle (joules per meter), thenonlinear wave in the form of the ame moves down the candle at a �xed velocity u givenby P = uE : (6.28)In other words, the velocity is �xed by the properties of the medium and does not depend onthe initial conditions. Were we to light ames at both ends of the candle, the ames wouldmove toward each others and annihilate themselves. This is also true if action potentialsare initiated at the opposite ends of an axon. When they meet, they run into each othersrefractory period and destroy each other. Thus, spikes are not solitons.6.6 Action Potential Propagation in Myelinated FibersThe successful culmination of the research e�ort by Hodgkin and Huxley heralded the comingof age of neurobiology. While we will deal in chapter ?? with their methodology as appliedin the past decades to the ionic currents found at the cell body of nerve cells, let us herebriey summarize spike propagation in myelinated axons (for more details, see Waxman,Kocis, Stys, 1995; Ritchie, 1995; Weiss, 1996).Axons come in two avors, those covered by layers of the lipid myelin and those thatare not. The squid axon is an unmyelinated �ber, common to invertebrates. In vertebrates,many �bers are wrapped dozens or even hundreds of time with myelin, the actual diameter
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Figure 6.14: Myelinated AxonsElectron micrograph of a cross section through portion of the optic �ber in an adult rat. Thecomplete transverse section through a single myelinated axon is shown, in close neighbourhoodto other axons.About four wrappings of myelin insulation are visible. The circular structures inside the axonalcytoplasm are transverse sections through microtubules. From Peters, Palay and Webster (1976).of the axon itself being only 60% or 70% of the total diameter (Fig. 6.14). This insulatingmaterial is formed by special supporting cells, called Schwann cells in the peripheral nervoussystem and oligodendrocytes in the central nervous system.A second specialization of myelinated �bers is that the myelin sheet is interrupted atregular intervals along the axon by nodes, named for their discoverer nodes of Ranvier. Here,the extracellular space gains direct access to the axonal membrane. Typically, the length of anode is very small (0.1%) compared to the length of the internodal segment (Fig. 6.15). In thevertebrate, single myelinated �bers range in diameter from 0.2-20 �m, while unmyelinated�bers range between 0.1-1 �m. In stark contrast, the diameter of unmyelinated invertebrate�bers range from under 1 �m to 1 mm.



Hodgkin-Huxley Model 167In myelinated axons, conduction does not proceed continuously along the cable, butjumps in a discontinuous manner from one node to the next. This saltatory conduction(from the Latin saltus, to leap) was clearly demonstrated by Huxley and St�ampi (1949)and Tasaki (1956). What these and similar experiments on frog, rabbit and rat myelinated�bers made clear is that ionic currents are strikingly inhomogeneous distributed across theaxonal membrane (Fig. 6.15; FitzHugh, 1962; Frankenhaeuser and Huxley, 1964; St�ampiand Hille, 1976; Rogart and Ritchie, 1977; Chiu, Ritchie, Rogart and Stagg, 1979; Chiu andRitchie, 1980). Spike generation essentially only takes places at the small nodes of Ranvier,which are loaded with fast, sodium channels (between 700 and 2000 per �m2). In mam-malian myelinated nerves, the repolarization of the spike is not driven by an large outwardpotassium current, as in the squid axon6 but is achieved using a rapid sodium inactivationin combination with a large e�ective leak conductance. Indeed, action potentials do notshow any hyperpolarization (Fig. 6.1B), unlike those in the squid giant axon. The originof the large, voltage-independent leak might involve an extracellular pathway beneath themyelin that connects the nodal and internodal regions (Barrett and Barrett, 1982; Ritchie,1995). Potassium channels are present under the myelin sheet along the internodal section,although their functional role is unclear (Waxman and Ritchie, 1985).The function of the numerous, tightly drawn layers of myelin around the internodalsegments is to reduce the huge capacitive load imposed by this very large cable segment, aswell as to reduce the amount of longitudinal current that leaks out across the membrane.The e�ective membrane capacitance of the entire myelin sheath, made up in the case of thefrog axon illustrated in Fig. 6.15 out of 250 myelin layers, is Cm=250 with Cm the speci�ccapacitance of one layer of myelin (similar to that of the axonal membrane), while the e�ectiveresistance is 250 times higher than the Rm of one layer of myelin. Even though the lengthof the interaxial node is typically 1,000 times larger than the node, its total capacitance hasthe same order of magnitude (Fig. 6.15). This allows the action potential to rapidly spreadfrom one node to the next, \jumping" across the intervening internodal area and reducingmetabolic cost (since less energy must be expended to restore the sodium concentrationgradient following action potential generation). There is a safety factor built into the system,since blocking one node via a local anesthetic agent does not prevent blockage of the impulseacross the node (Tasaki, 1953). Detailed computer simulations of the appropriately modi�edHodgkin-Huxely equations (based on the circuit shown in Fig. 6.15) have con�rmed all ofthis (Frankenhaeuser and Huxley, 1964; Rogart and Ritchie, 1977).Single axons can extend over one meter or more7, making conduction velocity of theelectrical impulses something that evolution must have tried to minimize at all cost. Mea-surements (Huxley and St�ampi, 1949) and computations indicate that the time it takes forthe currents at one node to charge up the membrane potential at the next node is limited bythe time it takes to charge up the intervening internodal membrane. This is determined bythe time constant of the membrane � , which is independent of the geometry of the axon. In6Pharmacological blockage of potassium channels has no e�ect on the shape of the action potential in therabbit �bers (Ritchie, Rang and Pellegrino, 1981).7Think about the spinal nerve axons of an elephant or of the extinct Brontosaurus.
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Figure 6.15: Electrical Circuit for a Myelinated AxonGeometrical and electrical layout of the myelinated axon from the frog sciatic nerve (Franken-haeuser and Huxley, 1964; Rogart and Ritchie, 1977). The diameter of the axon and itsmyelin sheath is 15 �m, the diameter of the axon itself 10.5 �m, the di�erence being madeup by 250 wrappings of myelin. The myelin is interrupted every 1.38 mm by a node ofRanvier that is 2.5 �m wide. The total distributed capacitance for the internode (2.2 pF)is only slightly larger than the capacitance of the much smaller node (1.6 pF). The sameis also true of the distributed resistance. At each node, the spike is re-ampli�ed by a fastsodium current and is repolarized by a potassium current. Little or no potassium current isfound at the nodes of Ranvier in mammalian myelinated axons. There, repolarization is ac-complished by rapid sodium inactivation in conjunction with a large e�ective \leak" current.



Hodgkin-Huxley Model 169this time the spike will have moved across the internodal distance, making the propagationvelocity proportional to this distance divided by � . Since anatomically, the internodal dis-tance is linearly related to the diameter of the axon, the velocity of spike propagation willbe proportional to the �ber diameter, u / d ; (6.29)rather than the square root dependency found for unmyelinated �bers (eq. 6.27). Rushton(1951) gave this argument a precise form using the principle of dimensional scaling. If, heargued, axons had the same speci�c membrane properties, then in order for points along twoaxons with di�erent diameters to be in \corresponding states", certain scaling relationshipsmust hold. In particular, space should increase in units of the internodal length and velocityshould be roughly proportional to the �ber diameter (for more details, see Weiss, 1996).The latter is actually the case (Fig. 6.16). When comparing the �ber diameter against thepropagation velocity for myelinated cat axons, a roughly linear relationship can be observed(Hursh, 1939; Rushton, 1951; Ritchie, 1982). With the exception of a 1.1 �m thick unmyeli-nated mammalian �ber that propagates action potentials at 2.3 mm/msec (Gasser, 1950),spike velocity in very small �bers has, so far, been di�cult to record.The functional importance of myelinated �bers is clear. They provide a reliable and rapidmeans of communicating impulses at a much reduced cost compared to unmyelinated �bers(at the same conduction velocity, an myelinated �ber can be up to 50 times smaller than anunmyelinated �ber). This large (� 2500) factor in packing allows the brain to squeeze morethan a million axons into a single nerve that supplies the brain with visual information. Theprimary cost of this insulation is the added developmental complexity and the possibilitythat demyelinating diseases, such as Multiple Sclerosis, can incapacitate the organism.6.7 Branching AxonsThe all-or-none nature of action potentials has lead to the idea that the axon serves mainlyas a reliable transmission line, making a highly secure, one way, point-to-point connectionamong two processing devices. Furthermore, because of its high propagation velocity, theaction potential is thought to arrive almost simultaneously to all of its output sites. In-deed, both properties have been used to infer that spikes propagating parallel �bers in thecerebellum serve to implement a very precise timing circuit (Braitenberg and Atwood, 1958;Braitenberg, 1967).It will not come as a surprise that the axon-as-a-wire concept is not quite true and needsto be revised. Experimentally, it is know that trains of action potentials show failure atcertain regions along the axon, most likely at the branch points. In other words, the trainof spikes generated at the soma may have lost some of its members by the time it reachesthe presynaptic terminals, with individual spikes \deleted" (Barron and Matthews, 1935;Tauc and Hughes, 1963; Chung, Raymond and Lettvin, 1970; Parnas, 1972; Smith, 1983).For instance, conduction across a branching point in a lobster axon fails at frequenciesabove 30 Hz (Grossman, Parnas and Spira, 1979a). This conduction block �rst appears
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Figure 6.16: Diameter and Propagation VelocityThe relationship between the (internal) diameter d of adult cat peripheral myelinated�bers and propagation velocity u of the action potential. The data are shown as dots(Hursh, 1939) and the least square �t as a line. Peripheral myelinated �bers are big-ger than 1 �m, while myelinated �bers in the central nervous system can be as thinas 0.2 �m, with an expected velocity in the 1 mm/msec range. From Ritchie (1982).in the thicker daughter branch and only later in the thinner branch, most likely due to adi�erential buildup of potassium ions (Grossman, Parnas and Spira, 1979b). Physiologicalevidence indicates that such a switching mechanism might subserve a speci�c function inthe case of the motor axon innervating the muscle used for opening the claw in the cray�sh(Bittner, 1968). Depending on the �ring frequencies, spikes are routed di�erentially into twobranches of the axon going to separate muscle �bers.These experimental studies have shown that action potentials may fail to successfullyinvade the daughter branches of a bifurcating axon. As the theoretical analysis by Goldsteinand Rall (1974) pointed out, the single most important parameter upon which propagationpast the bifurcation depends is its associated geometric ratioGR = d3=2daughter;1 + d3=2daughter;2d3=2parent ; (6.30)where the d's are the �ber diameters and it is assumed that the speci�c membrane properties



Hodgkin-Huxley Model 171are constant in all three branches. This should remind us, of course, of the analysis of thebranching passive cables (sections 3.1 and 3.2 and eq. 3.15) and, indeed, the reasoning isidentical. GR equals the ratio of the input impedances if all cables are semi-in�nite.Goldstein and Rall's (1974) and subsequent analytical and modeling investigations(Khodorov and Timin, 1975; Parnas and Segev, 1979; Moore, Stockbridge and Wester�eld,1983; L�uscher and Shiner, 1990a,b; Manor, Koch and Segev, 1991) established the followingprinciples. For GR =1, impedances match perfectly and the spike propagates without anyperturbation past the branch point (indeed, electrically speaking, for GR =1 the branchingcon�guration can be reduced to a single equivalent cable, albeit an active one; see section 3.2).If GR < 1, the action potential behaves as if the axon tapers and it will slightly speed up.The far more common situation is GR > 1, i.e. the combined electrical load of the daughtersexceeds the load of the main branch. As long as GR is approximately < 10, propagationpast the branch point is assured, although with some delay (that can be substantial for largevalues of GR). If GR > 10, propagation into both branches fails simultaneously, since theelectrical load of the daughters has increased beyond the capacity of the electrical currentfrom the parent branch to initiate a spike in the daughter branches. Parnas and Segev (1979)emphasize that for each constant geometric ratio, changes in the diameter ratio between thedaughter branches never yields di�erential conduction into one of the daughters if the speci�cmembrane properties are identical in both. This implies that the experimentally observeddi�erential conduction (Bittner, 1968; Grossman, Parnas and Spira, 1979a) must be dueto other factors, such as a run-down in the ionic concentration across the membrane orsaturation of the ionic pumps that are sensitive to the ratio of area-to-volume (and wouldthus be expected to occur earlier in larger �bers). Note that all of these modeling studieshave assumed unmyelinated �bers and that axonal branch points appear to be devoid ofmyelin.Up to ten to twelve bifurcations (see the heavily branched axonal terminal arbor inFig. 3.1M) can occur before the action potential reaches its presynaptic terminal where itinitiates vesicular release. The delay at branch points with GR >1, in conjunction with othergeometrical inhomogeneities, such as the short swellings at sites of synaptic terminals calledvaricosities, might add up to a considerable number, leading to a substantial broadening ofspike arrival times at their postsynaptic targets.The degree of temporal dispersion was simulated in the case of an axon from the so-matosensory cortex of the cat (Manor, Koch and Segev, 1991). Since it is almost entirelycon�ned to cortical gray matter, it was taken to be unmyelinated (Fig. 6.17). In the absenceof better data, Hodgkin-Huxley dynamics (at 20� C) were assumed. About 1,000 boutonswere added to the axon and the propagation time between spike initiation just beyond thecell body and these boutons was histogrammed (Fig. 6.17). The �rst peak (with a mean of3.8� 0.5 msec) is contributed from terminals along the branches in cortical areas 3a and 3b(see the inset in Fig. 6.17) and the more delayed one from those in area 4 (mean of 5.8�0.4 msec). Of the total delay, about 22-33% of the delay is due to the branch points andgeometrical inhomogeneities; the majority is simple propagation delay. Manor et al., (1991)conclude that temporal dispersion in the axonal tree will be minor, on the order of 0.5-1 msec.
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Figure 6.17: Propagation Delays along a Branching AxonWhat delays do action potential incur as they propagate through a highly branching axonal tree?This was simulated in the case of an HRP labeled axon originated in layer 5 of the somatosensorycortex of the adult cat. The drawing of the axon is from Schwark and Jones, (1989). Histogramof the delay incurred between action potential initiation just beyond the cell body and the 977terminals distributed in the terminal branches of the axon is shown at the bottom. The two humpscorrespond to synapses from the proximal and the distal part of the axonal tree. Over the 3.5 mm ofthe tree, the total delay is 6.5 msec and temporal dispersion is minimal. From Manor et al., (1991).



Hodgkin-Huxley Model 173Let us conclude with one observation. Computer simulations of branching axons (Segev,I., O'Donnell, P. and Koch, C., unpublished manuscript) have shown that a strategicallylocated inhibitory synapse of the shunting type onto one branch of the axon, following theon-the-path theorem (section 5.1.3), can selectively veto an action potential from invadingthis branch while not a�ecting spike invasion into the second branch. This would allowfor very fast synaptic switching or routing of information in an axonal tree (similar to atelephone network). While inhibitory synapses can be found directly at the axon initialsegment (Kosaka, 1983; Soriano and Frotscher, 1989), no synapses, whether excitatory orinhibitory, have been observed on or around axonal branching points. It is anybody's guesswhy the nervous system did not avail itself of this opportunity to precisely (in space andtime) �lter or gate action potentials.6.8 RecapitulationThe Hodgkin and Huxley 1952 model of action potential generation and propagation is thesingle most successful, quantitative model in neuroscience. At its heart is the depiction of thetime- and voltage-dependent sodium and potassium conductances GNa and GK in terms of anumber of gating particles. The state of GNa is governed by three activation particles m andone inactivating particle h, while the fate of the potassium conductance is regulated by fouractivating particles n. The dynamics of these particles are governed by �rst-order di�erentialequations with two voltage-dependent terms, the steady-state activation (or inactivation) andthe time constant. The key feature of activating particles is that their amplitude increaseswith increasing depolarization, while the converse in true for inactivating particles. For rapidinput to a patch of squid axonal membrane, spike initiation is exceeded whenever the netinward current becomes negative, that is when a particular voltage threshold Vth is exceeded.Inclusion of the cable term leads to a four-dimensional system of coupled, nonlineardi�erential equations with a wave solution that propagates at a constant velocity downthe axon. This wave, the action potential, is due to the balance between dispersion andrestoration caused by the voltage-dependent membrane. When injecting sustained currentsinto the axon, the equations predict two important aspects of the squid axon: the abruptonset of sustained �ring with a high spiking frequency and the very limited bandwidth ofthe �ring frequency.Hodgkin-Huxley's formalism continues to be used in all but a handful of today's quantita-tive models of nerve cell excitability, constituting a remarkable testimony to the brilliance ofthese researchers. It should be remembered that their model was formulated at a time whenthe existence of ionic channels, the binary, microscopic and stochastic elements underlyingthe continuous, macroscopic and deterministic ionic currents, was not known.Wrapping axons in insulating material, such as the many layers of myelin observed inmyelinated �bers that are found in all vertebrates, leads to a dramatic speedup over unmyeli-nated �bers. Conversely, at the same spike propagation speed, myelinated �bers can be upto 50 times thinner than unmyelinated �bers. In mammals, axons above 1 �m are usuallymyelinated, with speeds in the 5 mm per millisecond range, and rarely exceed 20 �m. When



174 Christof Koch, Aug-20-97axons reach their target zone, they branch profusely, enabeling them to make thousandsof contacts on postsynaptic processes. As train of spikes attempt to propagate past thesepoints, they can be slowed down, depending on the exact geometry of the junction. In themore extreme cases, individual spikes can fail to propagate past branch points.We conclude that pulses can communicate along axons reliably, rapidly (at speed betweenone and one hundred millimeters per millisecond) and with little temporal dispersion. Themain exception to this appears to be propagation of trains of spikes past branching points.Here, due to a variety of phenomena, conduction block can occur that will di�erentially routeinformation into one of the daughter branches or prevent conduction alltogether.


