
Kernel Current Source Density Method

Jan Potworowski1, Wit Jakuczun2, Szymon �¦ski1, Daniel Wójcik1

1 Department of Neurophysiology,

Nencki Institute of Experimental Biology,

3 Pasteur Street, 02-093 Warsaw, Poland

2 WLOG Solutions, Warsaw, Poland

March 8, 2011

Abstract

Local �eld potentials (LFP), the low-frequency part of extracellular electrical

recordings, are a measure of the neural activity re�ecting dendritic processing of

synaptic inputs to neuronal populations.

To localize synaptic dynamics it is convenient, whenever possible, to estimate the

density of trans-membrane current sources (CSD) generating the LFP.

In this work we propose a new framework, kernel Current Source Density method

(kCSD), for non-parametric estimation of CSD from LFP recorded from arbitrarily

distributed electrodes using kernel methods. We test speci�c implementations of this

framework on model data measured with one-, two-, and three-dimensional multi-

electrode setups. We compare these methods with the traditional approach through

numerical approximation of the Laplacian and with the recently developed inverse

Current Source Density methods (iCSD). We show that iCSD is a special case of

kCSD. The proposed method opens up new experimental possibilites of CSD anal-

ysis from already taken or new recordings on arbitrarily distributed electrodes (not

necessarily on a grid), which can be obtained in extracellular recordings of single unit

activity with multiple electrodes.

1 Introduction

Extracellular recordings of electric potential have great signi�cance in the studies of neural
activity in vivo. In the last few years we have witnessed rapid development of technology
for large scale electrical recordings. Various types of multielectrodes were devised to
simultaneously record extracellular potentials from multiple spatial locations (Normann
et al. 1999, Csicsvari et al. 2003, Barthó et al. 2004, Buzsáki 2004, Sher et al. 2007, Imfeld
et al. 2008, Frey et al. 2009, Ward et al. 2009, Charvet et al. 2010). The low-frequency
part of these recordings, the local �eld potentials (LFP), typically re�ect the dendritic
processing of synaptic inputs (Nunez & Srinivasan 2006, Einevoll et al. 2007, Pettersen
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et al. 2008, Lindén et al. 2010). Direct interpretation of LFP is di�cult as it is a nonlocal
measure of the neural activity: it may have contributions from neurons located more than
a millimeter away from the electrode (Kreiman et al. 2006, Liu & Newsome 2006, Berens
et al. 2008, Katzner et al. 2009, Xing et al. 2009) or even a few milimeters (Hunt et al.
2010). Therefore, if only possible it is convenient to estimate the current source density
(CSD), the volume density of net transmembrane currents, generating the LFP (Lorente de
No 1947, Pitts 1952, Plonsey 1969, Freeman & Nicholson 1975, Nicholson & Freeman 1975,
Mitzdorf 1985). CSD directly relates to the local neural activity and current source density
analysis is a convenient tool for analysis of LFP recorded from multielectrodes (Haberly
& Shepherd 1973, Mitzdorf 1985, Schroeder et al. 1992, Ylinen et al. 1995, Lakatos et al.
2005, Lipton et al. 2006, Rajkai et al. 2008, de Solages et al. 2008).

Since CSD in a homogeneous and isotropic tissue is given by the Laplacian of the
potentials, originally it was estimated by a discrete di�erentiation scheme from the poten-
tials measured on a regular grid (Freeman & Nicholson 1975, Nicholson & Freeman 1975,
Mitzdorf 1985). In the past few years a new method for CSD estimation has been devel-
oped, the inverse CSD (iCSD) method (Pettersen et al. 2006, �¦ski, Wójcik, Tereszczuk,
�wiejkowski, Kublik & Wróbel 2007, Wójcik & �¦ski 2010, �¦ski, Pettersen, Tunstall,
Einevoll, Gigg & Wójcik 2011). The main idea behind iCSD is to assume a speci�c para-
metric form of CSD generating the measured potentials (e.g. spline interpolated between
the grid nodes), calculate the LFP in a forward-modeling scheme to obtain the values of
CSD parameters (e.g. CSD values at the nodes) by matching the experimental data with
computed values. The iCSD framework requires an assumption of a speci�c geometry
of contacts requiring new calculations for each distribution of electrodes. So far, all the
propositions assumed recordings on regular, Cartesian grids.

Here we introduce a new, non-parametric method for CSD estimation. The kernel
CSD method (kCSD) uses some basic facts from the theory of reproducing kernel Hilbert
spaces used in machine learning (Aronszajn 1950, Vapnik 1998, Schoelkopf & Smola 2002,
Shawe-Taylor & Christiani 2004). This method does not require the user to specify the
restricted, parametrized form of the admissible CSD distributions. Instead, one speci�es
an arbitrarily broad family of possible distributions and uniqueness of the solution is
guaranteed by the minimum-norm requirement built in the method.

The assumption of regular electrode arrangement is not necessary, kCSD can be ap-
plied to recordings from electrodes distributed at any positions on one-, two-, and three-
dimensional sets with equal ease. Moreover, we show that kCSD is a general non-
parametric framework for CSD estimation including all the previous variants of iCSD
methods as special cases.

The article is organized as follows: in Section 2 we introduce the basic framework of
the method using reproducing kernel Hilbert spaces (RKHS) (Aronszajn 1950, Vapnik
1998, Schoelkopf & Smola 2002, Shawe-Taylor & Christiani 2004) and show an e�cient
regression algorithm applicable in RKHS. However, the CSD we want to estimate and the
potentials we measure are di�erent physical quantities which normally forces us to solve
a linear operator equation. Introducing a cross-kernel between spaces of potentials and
sources we can easily obtain estimation of sources. We apply this technique to estimate
the most plausible CSD consistent with the measured potentials. We show how to do this
in cases where the measurements were taken on sets of di�erent dimensionality, e.g. for
laminar multielectrodes, multi-shaft multielectrodes, and in the general three-dimensional
case. We also show that the previously introduced iCSD methods are special cases of
kCSD introduced here.
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To test the viability of the proposed scheme we performed a number of tests on model
data where we control the sources to be recovered from potentials. These tests are pre-
sented in Section 3. We �rst consider the case of regular grids, as these are the only cases
that were treated by the methods available so far, to show how the new method compares
with the readily available alternatives. Then we consider the case of arbitrary distributions
of contacts as the proposed methods can easily treat arbitrary geometry of the electrode
setup.

Since every measurement is subject to noise it is important to study its e�ect on
the method. Having established the soundness of the basic approach, in Section 4 we
study ridge regression as a possible means of avoiding over-�tting and removing almost
singularities which might arise for instance in case of atypical setups. The properties of
the proposed method, further directions of development, and the signi�cance of the kernel
approach are discussed in the �nal section.

2 The Kernel Current Source Density (kCSD) Method

Consider the following problem: N electrodes are placed in the brain at x1, . . . , xN ∈ R3

and we measure the extracellular potential V at N locations (V1, . . . , VN). The extracellu-
lar potential we sample is generated by transmembrane currents whose density C (current
source density, CSD) is what we would like to estimate. The connection between V and
C is given by the Poisson equation,

∇(σ∇)V = −C. (1)

Let us approximate the CSD generated by concerted activity of the myriads of neurons as
a sum of M localized sources b̃i(x),

C(x) =
M∑
j=1

Cj b̃j(x). (2)

Conceptually, we consider each b̃ as a model of activity of a small population of neurons. In
practice we consider sources of constant density within a ball of radius R and 0 elsewhere:

b̃i(x, y, z) =

{
1 (x− xi)2 + (y − yi)2 + (z − zi)2 ≤ R2

0 otherwise
(3)

or Gaussians:

b̃i(x, y, z) = exp

(
−(x− xi)2 + (y − yi)2 + (z − zi)2

2R

)
. (4)

Each of the sources b̃i generates potential in the whole space consistent with the Poisson
equation (1). In what follows we assume homogeneous and uniform conductivity tensor
σ and no boundary conditions (we return to discuss this issue in the �nal section). Then
the potential generated by source b̃i is

bi(x, y, z) =
1

4πσ

∫
dx′
∫
dy′
∫
dz′

b̃i(x
′, y′, z′)√

(x− x′)2 + (y − y′)2 + (z − z′)2
. (5)
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The relation between the sources and potentials is di�erent in lower dimensionality and for
other models of propagation, boundary conditions etc, but it does not a�ect the general
formulation of the method. In every case, however, we can introduce a linear operator
A : F̃ 7→ F connecting sources and potentials by

V (x) = AC(x) =
M∑
i=1

aibi(x) (6)

with bi = Ab̃i, where the space of sources is

F̃ =
{
C(x) = a1b̃1(x) + ...+ anb̃n(x) : b̃i : Rd −→ R

}
, (7)

and the space of potentials is

F =
{
V (x) = a1b1(x) + ...+ anbn(x) : bi : Rd −→ R

}
. (8)

We assume that b̃i (bi) are linearly independent and so they constitute bases of the linear
spaces F̃ and F . We consider A in one- and two-dimensional cases below.

Let us introduce a kernel function (a kernel for short) K : Rd × Rd −→ R by the
following equation

K(x,x′) =
N∑
i=1

bi(x)bi(x
′). (9)

With this kernel one can show (see for example Section 1.3, Theorem A in Aronszajn (1950)
and Theorem 3.11 in Shawe-Taylor & Christiani (2004)) that the space of potentials F is
the feature space of K and as such, (F , K) is a Reproducing Kernel Hilbert Space (RKHS).
That is, one can show that

F =

{
l∑

i=1

αiK(xi,x) : l ∈ N,xi ∈ Rd, αi ∈ R, i = 1, ..., l

}
. (10)

and it is a Hilbert space with the inner product of functions f(x) =
∑l

i=1 αiK(xi,x),
g(x) =

∑m
j=1 βjK(zj,x) given by

〈f, g〉H =
l∑

i=1

m∑
j=1

αiβjK(xi, zj). (11)

Note that we have now two representations of every function in F , as sum of kernels or
sum of basis elements

f(x) =
l∑

i=1

αiK(xi,x) =
M∑
i=1

aibi(x)

where ai =
∑l

j=1 αjbi(xj).
Using the inner product we can de�ne the norm in F by ‖f‖2

F = 〈f, f〉. It is easy to
see that in the two representations we have

‖f‖2
F =

l∑
i=1

l∑
j=1

αiαjK(xi,xj) =
M∑
i=1

a2
i .
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We use ‖f‖2
F to induce a norm in F̃ by

‖f̃‖2eF := ‖Af̃‖2
F =

M∑
i=1

a2
i . (12)

Our goal is to �nd the current source density C(x) consistent with the measured
potentials1. We �rst estimate the potential from data. As there are many more sources
than measurements there is an in�nite number of solutions. Consider potentials V (x) =∑M

i=1 aibi(x) consistent with the measurements, that is V (xk) =
∑M

i=1 aibi(xk) = Vk. To
�nd the potential with minimum norm ‖V ‖2 =

∑M
i=1 a

2
i satisfying these constraints, the

derivative ∂‖V ‖2/∂ak must be a linear combination of constraints derivatives along ak.
That is we have

ai =
N∑
k=1

βkbi(xk)

and the potential we seek takes the form

V ∗(x) =
N∑
i=1

βiK(xi,x) ∈M. (13)

Solving the constraints we get the parameters β1, . . . , βN to beβ1
...
βN

 =

K(x1,x1) · · · K(x1,xN)
...

. . .
...

K(xN ,x1) · · · K(xN ,xN)


−1 V1

...
VN

 , (14)

which can be written in more compact notation as

β = K−1 ·V

with an obvious de�nition of terms.
We have also assumed here that the measurements are su�ciently independent (infor-

mative) that K is of full order and so can be inverted. In all the cases we considered K was
invertible and we expect this to be true for all experimentally accessible electrode setups.
If this is not the case, for instance if two contacts are too close giving unstable inverse,
one can use one of many strategies to stabilize inversion. In particular the regularization
which we discuss in Section 4 also overcomes the problem of possible almost singularities
of K.

Having V ∗ given by

V ∗(x) =
M∑
i=1

βiK(xi,x) =
N∑
j=1

ajbj(x), (15)

where aj =
∑M

i=1 βibj(xi), we know that there exists exactly one C∗ ∈ F̃ generating V ∗

and it is given by

C∗ =
N∑
j=1

aj b̃j(x) =
M∑
i=1

βi

N∑
j=1

bj(xi)̃bj(x) =
N∑
i=1

βiK̃(xi,x). (16)

1Such consistence with data is appropriate when the observations are noise free. In section 4 we discuss

a more general treatment of data with noise.
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Thus we see that it is convenient to introduce the cross-kernel function

K̃(x,y) =
n∑
i=1

bi(x)̃bi(y). (17)

If we de�ne the vector function

K̃T (x) := [K̃(x1,x), . . . , K̃(xn,x)],

then
C∗(x) = K̃T (x) ·K−1 ·V. (18)

From (12) we see that C∗ is the current source density consistent with the measured
potentials that has the smallest norm in F̃ .

2.1 kCSD for measurements taken on planes or lines

In lower dimensionality the framework changes because in order to calculate the potentials
generated by a source we must assume the structure of the source in the normal (perpen-
dicular) directions to the plane (in 2D) or line (in 1D) of measurements. The need for
such models and speci�c examples were carefully discussed by Pettersen et al. (2006) for
the case of laminar recordings and by �¦ski, Pettersen, Tunstall, Einevoll, Gigg & Wójcik
(2011) for planar recordings (such as multishaft electrodes).

2.1.1 kCSD in 2D

Consider a situation in which LFP is measured by electrodes that are arranged on a �at
surface, e.g. as in (Csicsvari et al. 2003). To estimate CSD we need to make assumptions
about its pro�le in the direction perpendicular to the surface. Let's introduce a coordinate
system (x, y, z) and assume that the electrodes are arranged on the surface spanned by the
x and y axes. In �¦ski, Pettersen, Tunstall, Einevoll, Gigg & Wójcik (2011) we proposed
to consider the CSD as a product of a two-dimensional pro�le f̃(x, y) and a speci�c pro�le
H in the perpendicular direction z :

f̃(x, y, z) = f̃(x, y)H(z).

For H(z) here we take a simple step function:

H(z) =

{
1 −h ≤ z ≤ h

0 otherwise

although other choices such as a Gaussian pro�le are also possible. Thus we assume that
the CSD pro�le is constant in z direction within a slice of thickness 2h centered at the
surface with electrodes and 0 elsewhere. It turns out that the speci�c choice of pro�le H(z)
in�uences mainly the amplitude of the calculated potentials and so the estimated sources,
while their overall shape is reasonably robust (�¦ski, Pettersen, Tunstall, Einevoll, Gigg
& Wójcik 2011).

The potential measured by an electrode placed in some point (x, y, 0) is in this case
given by:

f(x, y) =
1

2πσ

∫
dx′
∫
dy′ arsinh

(
2h√

(x− x′)2 + (y − y′)2

)
f̃(x′, y′) =: (A2f̃)(x, y).

(19)
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In this case it is su�cient to estimate the two-dimensional pro�le f̃(x, y) to get an estimate
of the overall CSD in the region. Therefore we can de�ne spaces F and F̃ by introducing
two-variable basis functions. This can be done similarly as in the 3D case, using simple
step basis functions for space F̃ :

b̃i(x, y) =

{
1 (x− xi)2 + (y − yi)2 ≤ R2

0 otherwise
(20)

or Gaussians:

b̃i(x, y) = exp

(
−(x− xi)2 + (y − yi)2

2R

)
. (21)

The potential basis functions bi ∈ F can be derived by applying equation (19):

bi(x, y) =
1

2πσ

∫
dx′
∫
dy′ arsinh

(
2h√

(x− x′)2 + (y − y′)2

)
b̃i(x

′, y′). (22)

2.1.2 kCSD in 1D

Assume that the electrodes are arranged along a straight line. As in the previous section
we need to make assumptions on CSD pro�le in the perpendicular plane. Pettersen et al.
(2006) proposed to introduce an overall CSD pro�le of the form:

f̃(x, y, z) = f̃(z)H(x, y).

We assume rotational symmetry around z axis and for H(x, y) we take a simple step
function on a disk of radius r:

H(x, y) =

{
1 x2 + y2 ≤ r2,

0 otherwise.

The potential measured by an electrode placed in some point (0, 0, z) is in this case given
by:

f(z) =
1

2σ

∫
dz′
(√

(z − z′)2 + r2 − |z − z′|
)
f̃(z′) = (A1f̃)(z) (23)

Now the space of CSD F̃ can be de�ned by introducing one-variable basis functions. As
in the previous cases, one can use simple step functions

b̃i(z) = I[zi−R;zi+R](z) (24)

or Gaussians

b̃i(z) = exp

(
−(z − zi)2

2R

)
. (25)

Finally, the potential basis functions bi ∈ F can be obtained by applying equation (23):

bi(z) =
1

2σ

∫
dz′
(√

(z − z′)2 + r2 − |z − z′|
)
b̃i(z

′). (26)
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2.2 Spatial arrangement of the basis elements

In Section 2 we introduced example shapes of the basis functions
{
b̃i

}n
i=1

which we con-

sidered in various dimensions. To implement kCSD we have to specify the number and
localization of these sources. Let us denote the area where we want to estimate CSD by
B ⊂ Rd, where d ∈ {1, 2, 3}. In all the tests we carried out B was a product of intervals,
B = ∩dk=1Ik, Ik = [ak, bk] ⊂ R, for example, in Section 3.1:

B =
{

(x, y) ∈ R2 : xmin − ξ∆x ≤ x ≤ xmax + ξ∆x, ymin − ξ∆y ≤ y ≤ ymax + ξ∆y
}
.

To generate the basis of sources we always took a spherically symmetric template function
b̃(x) and translated it to nodes of a regular, rectangular grid xi ∈ B obtaining the full basis
b̃i(x) = b̃ ((x− xi)

2) making sure that each point in the estimation area B belongs to the
support of at least two basis sources. It turns out that to get apparently smooth results
R should be a multiple of the spacing between the grid nodes, otherwise we observed
signi�cant irregularities.

2.3 Relation between iCSD and kCSD

The main feature of kCSD is e�cient estimation in spaces with rich bases: we assumed here
that in general the dimension of the space of sources N is much higher that the number of
measurements,M . IfM = N then kCSD is equivalent to a variant of previously developed
inverse Current Source Density method (Pettersen et al. 2006, �¦ski, Wójcik, Tereszczuk,
�wiejkowski, Kublik & Wróbel 2007, �¦ski, Pettersen, Tunstall, Einevoll, Gigg & Wójcik
2011), in which we take the basis from the kCSD method as the N -parameter family of
sources in the inverse CSD method. Then in both models we have the same space of
sources and no degeneracy, hence the solutions have to be the same. To illustrate the
connection between the two approaches we show this explicitly in Appendix B.

3 Tests and examples

To test the viability of the kCSD method we performed a number of numerical experiments
using model sources and experimentally registered potentials.

The �rst question is how the kCSD method compares to the other methods (�nite-
di�erence approximation, inverse CSD). To answer this we used several con�gurations of
the model CSD to calculate the potentials which would have been measured using multi-
contact electrodes. To be able to apply all the di�erent CSD methods we had to use
regular grids, that means we calculated the potentials either at equidistant points in 1D
or at points which formed a Cartesian grid in 2D or 3D. Then we tested the similarity of
the CSD reconstructions to the model CSD for a wide range of parameters of the kCSD
method. These tests are described in more detail in Section 3.1 below. The conclusion
is that for the electrode grids where all the methods can be applied the kCSD method
performs as well as the spline iCSD method or better (which is typically better than the
�nite di�erence � `traditional' � CSD analysis) if we choose basis appropriately.

A major strength of kCSD is its capability to estimate CSD from arbitrary distributions
of contacts with equal ease. Thus the second and perhaps the most interesting question
is how the kCSD method performs for contacts not forming a regular grid. Though it is
sometimes possible to use other CSD methods in such cases, it is usually harder to use
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them without the assumption of the regularity and the kCSD method seems to be the
most natural choice. We illustrate this below in Section 3.2. First we show how the kCSD
method can be easily applied to (model) potentials recorded on a grid used in Wirth &
Lüscher (2004). Then we test the quality of reconstruction for electrodes placed randomly
within the probed area and check how it changes with increasing number of electrodes.

The intermediate case between regular and irregular grids is when we use a grid of
regularly placed contacts but with a small number of contacts missing. This can happen,
for example, when one or two contacts are used for stimulation instead of recording. This
problem was studied earlier in Wójcik & �¦ski (2010) where two approaches based on
iCSD were proposed: one was to substitute the missing channels with averages of their
neighbors (LA for local averages), the other was to restrict the dimensionality of the
possible CSD distributions and use the least-squares �t to all available recordings (LS).
Again, the kCSD method seems to be a natural choice here. In Section 3.3 we test the
kCSD method on the same experimental data as used in Wójcik & �¦ski (2010) and show
that it is a substantially better approach than the LS method from Wójcik & �¦ski (2010).
Comparison of kCSD with the LA method depends on the dataset tested.

3.1 Comparison of CSD methods on regular grids

The kCSD method as de�ned above has a number of parameters which need to be spec-
i�ed before the method can be applied to data. Speci�cally, we need to de�ne the basis{
b̃i(x)

}n
i=1

of the space of the CSD distributions F̃ . As an example we will consider a

two-dimensional regular, rectangular electrode grid (z = 0 for all electrodes). We generate
all the basis functions by translating a single reference function of the form c(x, y)H(z)
where as in Section 2.1.1 for c(x, y) we take either a two-dimensional Gaussian

cg(x, y) = exp

(
−x

2 + y2

2R

)
, (27)

or a two-dimensional cylindrically symmetric step function

cs(x, y) =

{
1 if x2 + y2 < R2

0 otherwise.
(28)

Therefore, each basis function b̃i is a translation of cs or cg. The parameter R in the
formulae above is the size of the basis sources in the xy plane. As the transverse pro�le
H(z) we take a step function: H(z) = 1 for −h ≤ z ≤ h. Let xmin, xmax denote the
minimum and the maximum of the x coordinates of the electrodes, similarly for y; the
spacing of the grid is ∆x,∆y. We assume that the sources can extend beyond the electrode
grid, speci�cally, the central points (x, y) of the basis functions can be in the region
xmin − ξ∆x ≤ x ≤ xmax + ξ∆x, ymin − ξ∆y ≤ y ≤ ymax + ξ∆y, where ξ is a parameter.
We arrange the sources as described along a regular rectangular grid. The �nal parameter
is the number of sources n. We choose such n that it is a product of numbers of equally
spaced sources in x and y directions. Summarizing, the parameters we have to specify are
n, R, h, and ξ, and the choice between step and Gaussian pro�les in the xy plane. The
choice of the translation parameters and number of sources was described in Section 2.2.

Let us focus on an eight-by-eight grid with equal spacing in both directions (∆x =
∆y = 0.2, all lengths in this section are in mm) spanning the area 0 ≤ x, y ≤ 1.4. We
chose two sets of test sources, both having product structure c(x, y)H(z) with H(z) = 1
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for −0.5 ≤ z ≤ 0.5. The datasets are composed of Gaussian sources: in the �rst set the
sources are large compared to the inter-electrode distance (Fig. 1A), and in the second
dataset they are small (Fig. 2A). The exact formulae are given in the Appendix A.

We calculated the potentials at the registration points (for that purpose the inte-
gration area was (x, y) ∈ [−0.5, 1.9] × [−0.5, 1.9]). Then we performed a scan over
the space of parameters of the kCSD method: we took all possible combinations of
R = 0.05, 0.1, 0.15, . . . , 0.4, n = 902, 1202, . . . , 2402, h = 0.2, 0.5, 1, and ξ = 0, 0.5, 1, 2, 3.
For each combination of parameters, and for both the Gaussian and the step pro�les we
reconstructed the CSD and calculated the normalized reconstruction error e using the
formula

e =

∫
(c(x, y)− ĉ(x, y))2∫

c(x, y)2
,

where ĉ(x, y) is the reconstructed CSD (�¦ski, Wójcik, Tereszczuk, �wiejkowski, Kublik
& Wróbel 2007).

In Figures 1 and 2 we show example reconstructions using the kCSD method with

Figure 1: Test results for the �rst model dataset (`large sources'). A) The model CSD. B)
The potentials. C) Reconstruction using traditional CSD. D) Reconstruction using spline
iCSD method with D boundary conditions. E) Reconstruction using the kCSD method
for n = 8100, ξ = 2, R = 0.3, h = 0.5, step basis. F) Reconstruction using the kCSD
method for n = 8100, ξ = 1, R = 0.1, h = 0.5, Gaussian basis.

parameters close to optimal (Fig. 1E, Fig. 2E) and with parameters farther from optimal
(Fig. 1F, Fig. 2F), exact parameter sets given in captions. These are compared with
traditional CSD (Fig. 1C, Fig. 2C) and spline iCSD reconstructions (Fig. 1D, Fig. 2D).

By `traditional CSD' here and in the following we understand the following proce-
dure: (i) extend the grid by extra layer in each direction and copy the potential value
at extra points from nearest neighbors; (ii) calculate the CSD value at the grid points
by discrete numerical approximation to the Laplacian; (iii) cubic spline interpolate in be-
tween. The iCSD with D boundary conditions means the CSD model where the original
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Figure 2: Test results for the �rst model dataset (`small sources'). A) The model CSD. B)
The potentials. C) Reconstruction using traditional CSD. D) Reconstruction using spline
iCSD method with D boundary conditions. E) Reconstruction using the kCSD method
for n = 8100, ξ = 0.5, R = 0.2, h = 0.5, Gaussian basis. F) Reconstruction using the
kCSD method for n = 8100, ξ = 0.5, R = 0.4, h = 0.5, Gaussian basis.

grid was extended with an extra layer and the same CSD value was assumed as in the
nearest neighbor, spline interpolated CSD between the nodes (�¦ski, Wójcik, Tereszczuk,
�wiejkowski, Kublik & Wróbel 2007, �¦ski, Pettersen, Tunstall, Einevoll, Gigg & Wójcik
2011).

The errors for optimal kCSD parameters (e = 0.06% and e = 35% for large and small
sources, respectively) are smaller than the errors of the traditional CSD (e = 43% and
e = 38%) and spline iCSD (e = 1% and e = 36%). If the parameters are farther from the
optimal set the error of the kCSD method grows (e = 3% and e = 66% for the presented
examples). Note that for the `small sources' data set all errors are rather large. This is
because the electrodes grid is too sparse to probe the detailed structure of the sources,
compare Figure 2C�F with Figure 5 where a denser electrodes grid leads to much better
reconstruction. This is intuitively very natural as it resembles the situation in Fourier
analysis where it is impossible to recover frequencies higher than half the sampling rate of
the signal (Nyquist theorem).

The results of the parameters space scan can be summarized as follows: the most
important parameter is the size of the basis sources R. For the �rst set of model sources
(`large sources') it is best to choose large R (R = 0.4 or even larger), while for the second
set (`small sources') the results are best for small R (∼ 0.1). This is not surprising since
any CSD estimation method works best if the assumed CSD family matches closely the
actual distribution.

Since optimal reconstruction parameters depend on the dataset we further tested the
dependence of reconstruction error on R on a large set of randomly placed Gaussian sources
of di�erent sizes from small to large. We used 2000 data sets, the details on how the sources

11



Figure 3: Dependence of reconstruction error on R for step (A) and Gaussian (B) basis
sources. The boxes in the `box and whisker' plots show the median and the lower and
upper quartile values; the whiskers extend over the neighboring values up to a maximum
of 1.5 times the interquartile range; the values further away are shown as outliers (+ signs,
typically less than 10% of the data points).

Figure 4: Dependence of (logarithm of) reconstruction error on R for step (A) and Gaus-
sian (B) basis sources. The boxes in the `box and whisker' plots show the median and
the lower and upper quartile values; the whiskers extend over the neighboring values up
to a maximum of 1.5 times the interquartile range; the values further away are shown as
outliers (+ signs, typically less than 10% of the data points).
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were chosen are given in the Appendix A. For each data set we performed reconstructions
for di�erent R (other parameters kept �xed). The results for both Gaussian and step bases
are presented in Fig. 3 and 4. For this collection of 2000 data sets the optimal R is ∼ 0.3 to
0.4 for the Gaussian basis and ∼ 0.15 to 0.2 for the step basis. One interesting observation
is that the Gaussian basis leads to weaker dependence of the reconstruction error on R.
Therefore, the recommendation for this electrode grid would be to use Gaussian basis
sources and an intermediate value of R, say R = 0.35. For such choice the method should
work reasonably well for a wide range of CSD sources.

The conclusions regarding the choice of h are the same as in inverse CSD method (�¦ski,
Pettersen, Tunstall, Einevoll, Gigg & Wójcik 2011): the closer we are to the actual h, the
better; assuming wrong h may have strong in�uence on the amplitude of the reconstructed
sources but the shape of the distribution is roughly preserved. The non-zero values of the
parameter ξ dramatically help in cases where the actual activity in the xy plane extends
beyond the electrodes grid (the `large sources' case). The reconstruction error grows with
ξ when there is no activity beyond the grid, but this e�ect is very small, therefore ξ = 1
is a safe choice in any case. The number of sources (originally between n = 902 up to
n = 2402) had almost no e�ect on the reconstructions. We further studied reconstructions
with smaller number of sources (n = 102, 112, . . . 152, 202, 302, 452, 602, 752) and we found
that the reconstructions only break for very sparse bases (such as n = 102); taking n = 202

yields errors only slightly higher than the optimal values of n. The reason that the method
does not work for very small n (especially when used together with small R) is that the
character of the cross-kernel functions changes dramatically: for larger n they are `smooth'
functions with a single maximum, whereas for small n the kernels have multiple maxima
located at the observation points and are therefore unable to reproduce smooth CSD
distributions faithfully. Our recommendation is that n should be such that the basis
sources are denser than the observation points (for example n = 202 for 8 by 8 grid).

3.2 kCSD on irregular grids

One of the strengths of the kCSD method is that it can be easily applied to any con�g-
uration of the recording points. As an example let us consider an electrode array used
by Wirth & Lüscher (2004), see Fig. 5. The contacts of the array do not form a regu-
lar, rectangular grid similar to the ones used in Section 3.1 (although locally they form a
square lattice). While it would be possible to apply some form of inverse CSD (or even
numerical second derivative), the kCSD method is the most natural method to use in this
case. Figure 5 presents the test sources used in this case (`small sources' dataset described
in Section 3.1), the potentials resulting from the sources and the reconstructed CSD. Note
that this reconstruction is better than the reconstructions obtained in Section 3.1 because
the inter-electrode distance, 140µm, is smaller here.

In fact, it is equally easy to apply the kCSD method to regular and irregular grids,
which is not the case for other CSD methods such as spline iCSD introduced previously.
To demonstrate the strength of this new approach we consider electrodes placed randomly.
Such irregular placement could occur in real experiments, for example, when many elec-
trodes are positioned independently to record spiking activity and then also the LFP signal
is recorded. For the two test datasets de�ned in Section 3.1 we chose randomly a set of
electrodes placed within the area (x, y) ∈ [0, 1.4]× [0, 1.4] 2 and calculated the reconstruc-
tion error e (example reconstructions shown in Figure 6). For each number of electrodes

2The only constraint was that any two electrodes can not be closer than 0.14 mm.
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Figure 5: CSD reconstruction on an irregular grid of electrodes (circles). A) The model
CSD. B) The estimated potentials. C) CSD reconstructed from potential values at the
grid using kCSD method.

Figure 6: CSD reconstructions from randomly placed electrodes (examples). Top row:
`large sources', bottom row: `small sources'.
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we repeated this procedure 50 times to obtain error bars on e. The results are presented
in Figure 7. For `large sources' the CSD can be reconstructed quite faithfully from as little

Figure 7: Distribution of errors for reconstruction from randomly placed electrodes. A)
Large sources, B) small sources. For the meaning of the `box and whisker' plots see caption
of Figure 3.

as 16 electrodes. Because of small spatial extent of `small sources', the errors are large
(∼ 40%) even for 64 electrodes.

Similar reconstructions from randomly placed electrodes can be performed also in one
and three dimensions. Figure 8 shows an example of reconstruction of sources (A) from

Figure 8: CSD reconstruction from randomly placed electrodes in 1D. A) model CSD; B)
single reconstruction, electrodes positions are marked with vertical bars at the x axis; C)
reconstructions for 12 di�erent sets of randomly placed electrodes.

9 electrodes placed randomly on a line (B). Fig. 8 (C) shows reconstructed sources for 12
di�erent distributions of nine contacts. The sources used in Fig. 8 and Fig. 9 are described
in Appendix A.4.

3.3 Kernel CSD on incomplete regular grids

One interesting case of irregular grids are regular grids with a number of missing con-
tacts. Such situations arise often in real experiments e.g. because of speci�c experimental
setup (Bakker et al. 2009) or hardware failures. In the kCSD framework one can deal with
such situations without problems. Figure 9 shows a simple one-dimensional example for
the same sources presented in Fig. 8.
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Figure 9: One-dimensional example of reconstructing CSD from a regular grid with one
missing electrode. A) Model CSD. B) Reconstruction from all but one channels, electrodes
positions are marked with vertical bars at the x axis � note one is missing. C) Realizations
for di�erent electrodes removed.

In previous work (Wójcik & �¦ski 2010) we studied possible remedies to the `incom-
plete grid' problem in the context of the inverse CSD (iCSD) method. We proposed two
solutions: either to substitute the missing channels with averages of the neighbors (LA
for `local averaging') or to �t a CSD distribution described by fewer parameters than the
number of electrodes using least squares method (LS). Here we treat the same problem in
the context of kCSD. The kCSD method is a natural replacement for the LS approach. It
can also be applied to the full dataset obtained with the LA method (the results are very
close to the LA + spline iCSD method). In this section we compare the two approaches
(either kCSD on incomplete grid or LA + kCSD). As the irregularity of the grid is natu-
rally accounted for in the kCSD method without the need to explicitly use least squares
�t we expect this method to perform much better than the LS method in the inverse CSD
case.

To test the relative performance of kCSD and LA + kCSD methods we �rst studied
the two-dimensional datasets (`large sources' and `small sources') introduced above in
Section 3.1. We set a number n of missing channels (1 ≤ n ≤ 8) and we studied a large
number of possible combinations of missing points (for n = 1 and n = 2 we checked all
possibilities, 64 and (64×63)÷2 = 2016, respectively; for each larger n we chose randomly
2000 combinations). For each con�guration and each of the two datasets we reconstructed
the CSD twice, �rst using the kCSD method on the incomplete dataset, second using
the LA + kCSD approach. The results plotted as the mean of the reconstruction error
e ± standard deviation are presented in Figure 10. The kCSD method applied to the
incomplete set yields better results than the LA + kCSD method. The di�erence is
striking in case of `large sources', Figure 10A, which is not unexpected as we saw before
that for this dataset the kCSD reconstructions are very precise even for a much smaller
number of available measurements (Figure 7). Evidently in this case local averages of
neighbors lead to incorrect approximation of the missing values of potential distorting the
data and resulting in bigger reconstruction errors.

To directly compare the new kCSD method to the LA + iCSD and LS methods from
Wójcik & �¦ski (2010) we performed another numerical experiment, this time using the
experimental datasets utilized in Wójcik & �¦ski (2010). The data are the extracellular
evoked potentials recorded in the rat brain on a three-dimensional grid of 4× 5× 7 points
and are described in detail elsewhere (�¦ski, Wójcik, Tereszczuk, �wiejkowski, Kublik
& Wróbel 2007, �¦ski, Kublik, �wiejkowski, Wróbel & Wójcik 2010). For the readers'
convenience the spline iCSD reconstruction of the two time frames used here are presented
in Figure 11. In Wójcik & �¦ski (2010) we concluded that the LA + iCSD method is to be
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Figure 10: Comparison of two methods (LA followed by kCSD � o's, kCSD on an incom-
plete grid � x's) to reconstruct CSD from data on a grid with missing points. A) Large
sources, B) small sources. The x-axis shows the number of recording points removed from
the grid. The values plotted at y-axis are the means of normalized reconstruction error e,
error bars are ± standard deviation.

preferred over the less stable LS approach. Here, similarly as in the two-dimensional case
above we calculated the reconstruction error for di�erent electrodes setups using either
kCSD or LA + kCSD approach3. As expected, the kCSD method is indeed much better
than LS combined with spline iCSD: the errors of reconstruction are much smaller and
the results are much more robust (there are no cases of huge errors as opposed to the LS
method in Wójcik & �¦ski (2010)). Still, the LA + kCSD method performs better for
this datasets than pure kCSD. This is a result similar to the one obtained in Wójcik &
�¦ski (2010) and it is di�erent from the result for the two-dimensional case of `large' and
`small' sources. The results are presented in Figures 12 and 13 (the A and B panels of
these �gures are direct counterparts of panel C and D of �gures 4 and 6 from Wójcik &
�¦ski (2010)).

Summarizing the two tests described above: the relative performance of the pure kCSD
method on an incomplete grid vs. LA + kCSD method depends on the exact geometry
of the electrodes. Therefore, we recommend that the decision if missing values should be
supplemented with local averages of the neighbors is made based on tests on plausible
model data for every particular electrodes setup.

4 Regularization: beyond over-�tting

We have assumed up till now that the data are precise (measured without errors) which is
never the case in practice. Measurements from electrodes are always corrupted with noise.
To minimize the e�ect of this noise on inferences one should avoid over-�tting estimations
to the data observed. We don't want slight changes in the observations to in�uence the
results. Taking such precautions is known in statistics as regularization.

Regularization can be expressed as reducing the variance of estimators but allowing
bias. Until now we have constructed unbiased estimators, that exactly �tted the observa-

3Note that here we know only the potentials and not the true sources, therefore the error is the

di�erence between the reconstruction from complete and incomplete data.
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Figure 11: Experimental datasets � CSD reconstructions from complete sets of recordings.
Each row presents a three-dimensional volume at a �xed time (top row: t = 3.5 ms, bottom
row: t = 15 ms) after stimulus as a collection of �ve parallel planes. The electrodes (4×5×7
grid) are marked with circles. For details on experiment and full speci�cation of data and
procedures used see �¦ski, Wójcik, Tereszczuk, �wiejkowski, Kublik & Wróbel (2007).

Figure 12: Comparison of two methods (LA followed by kCSD � o's, kCSD on an in-
complete grid � x's) to reconstruct CSD from data on a grid with missing points. The
x-axis shows the number n of recording points removed from the grid. The values plotted
at y-axis are the average logarithm of normalized reconstruction error e, error bars are
± standard deviation. (A) The best 90% out of 2000 random choices of removed points
(except n = 1 and n = 2 where 90% of all possibilities are used). (B) Same as (A) but for
the worst 10% of the cases. The data used here are the same as used in Figures 3 and 4
in Wójcik & �¦ski (2010), see also Figure 11A above.
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Figure 13: Comparison of methods of reconstructing CSD from incomplete data; see the
caption of Figure 12. The data used here are the same as used in Figures 5 and 6 in
Wójcik & �¦ski (2010), see also Figure 11B above.

tions
k∑
i=1

(
k∑
j=1

βiK(xj,xi)− fi

)2

= 0. (29)

We examined a popular method for regularization called ridge regression (Shawe-Taylor &
Christiani (2004) p. 31-32) based on a modi�cation of this condition. To make parameters
{β}ki=1 less sensitive to noise instead of requiring (29) we minimize:

k∑
i=1

(
k∑
j=1

βiK(xj,xi)− fi

)2

+ λ
k∑
i=1

β2
i , (30)

which can be done by the following matrix operations:

β = (K + λI)−1 · f . (31)

Thus the resulting regularized estimate of CSD is

C∗(x) = K̃T (x) · (K + λI)−1 ·V.

Adding a diagonal matrix to K opposes the bad consequences of an eventual (almost)
singularity of K. Increasing the value of λ results in a continous reduction of magnitude
of the parameters β which stabilises the model (decreases variation but increases bias)
but choosing λ too large eventually ignores the data. Therefore one has to decide on a
compromise value for λ.

One possibility to select optimal value of λ using data is to use cross-validation (Hastie
& Tibshirani (2001) p. 214 - 215). The idea behind cross-validation is fairly simple. The
observations are divided into L subsets which can be of equal size. Next we construct L
regressors each time using one of the L subsets as a test set and the rest as a training set.
Each time the estimation error on the test set is calculated. This procedure is repeated
for a wide range of λ values and each time the average error is calculated. At the end we
choose the value of λ which resulted in the smallest average error. In practice we used
`leave one out' cross validation where each test set consists of one element.

To test the viability of ridge regression we performed a test using the model dataset
`large sources'. To the calculated potentials we added Gaussian noise of std equal to
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Figure 14: A) Distribution of model sources used to test ridge regression. blue circles
indicate positions of simulated electrodes. To the potentials measured there we added
Gaussian noise with std equal to 10% of the total variation of the noise-free potential in
the studied domain. B) CSD reconstruction without ridge regression C) Reconstruction
using ridge regression with λ chosen via cross-validation.

10% of the total variation of the noise-free potential in the studied domain (maxV (x) −
minV (x)). Figure 14 shows that the kCSD method without ridge regression works rather
poorly whereas combining kCSD with ridge regression and cross-validation improves the
reconstruction signi�cantly.

Next we tested how well does cross validation perform in choosing the optimal param-
eter. For a wide range of λ we checked how ridge regression performs on the whole data
set. Fig. 15 shows that the λ obtained with cross-validation gives a very good estimate of

Figure 15: Line: Reconstruction error of kCSD with ridge regression on the whole data set
for a wide range of parameters. Circle indicates the value of λ chosen via cross-validation.

the optimal value.
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5 Discussion and summary

In this article we have introduced a new framework for estimation of current sources
from extracellular potentials using kernel methods. Introduction of kernels in this context
opens up new experimental possibilities allowing e�cient approximation of the sources
from arbitrary distributions of contacts. We discuss here the advantages and limitations
of the presented approach indicating possible further directions of development, both in
the physical and statistical aspects of the problem.

Advantages of kCSD The main advantages of kCSD compared with the previously
developed methods are (i) conceptual separation of the model construction (introducing
the sources and potentials � the bi(x) and b̃j(y) basis functions) from the distribution of
electrode locations, and (ii) ease of reconstructing CSD from arbitrarily located contacts.
One immediate bene�t is that in cases such as the 3D recordings analyzed in �¦ski, Wójcik,
Tereszczuk, �wiejkowski, Kublik & Wróbel (2007), �¦ski, Kublik, �wiejkowski, Wróbel &
Wójcik (2010), where we know that the potentials where not recorded exactly on a grid, in
the framework of kCSD we can take the best estimates of electrode position and the cost
of calculations does not change, as opposed to the 3D iCSD where we assumed electrode
location on a regular grid and neglected possible errors.

This �exibility may lead to new experimental possibilities. One case we see is combining
acute experiments, such as the one described in �¦ski, Wójcik, Tereszczuk, �wiejkowski,
Kublik & Wróbel (2007), �¦ski, Kublik, �wiejkowski, Wróbel & Wójcik (2010), where one
can perform precise scans of electrical activation of tissue with high spatial resolution,
with chronic experiments, where of necessity, one would restrict oneself to a few precisely
positioned electrodes, usually not on a grid. One could then use the information about the
activity of CSD obtained in the acute experiments to build optimal model spaces allowing
the best possible reconstruction of the sources from the limited number of measurements
available in the chronic situation. This may lead to a clearer spatial and temporal sepa-
ration of functional pathways than possible using methods available so far.

Interplay of modeling and data analysis in CSD reconstruction A question which
arises in connection with the above mentioned approach is this: given a speci�c pro�le of
the sources, including their temporal dynamics or not, assume available N electrodes. How
should they be positioned and how should one construct the model RKHS to minimize
errors of CSD reconstruction in the studied process? Or alternatively, how many electrodes
are needed and how should they be positioned to allow for e�cient estimation of CSD with
given precision? We expect that the answers to these open questions would signi�cantly
depend on the speci�c activity and structure. To �nd optimal positions for recording
it would probably be necessary to test di�erent arrangements of electrodes on simulated
data. This calls for a new optimization scheme and for development of e�cient simulations
of local �eld potentials in realistic geometries.

Spectral decomposition We have concentrated here on the estimation of sources from
potentials, as the CSD seems to be the main object of interest in terms of physiology.
However, the approach through RKHS can give us additional insight through the `spectral
decomposition' (Shi et al. 2008). That is, for a selected representation of sources (given
set of basis sources b̃i(x)) we can calculate the contribution of every basis source to the
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estimated CSD at any time point. We can write Eq. (18) as

f̃ ∗(x) =
n∑
j=1

αj b̃j(x)

where

αj =
k∑
i=1

βibj(xi).

It may happen that temporal changes of `activation' αj of a source b̃j(y) centered on xj
are di�erent from the value of estimated CSD at x, as this is a sum of contributions from
all the sources b̃i containing xj in their support. This could yield additional insight in
the analysis of data, especially if the construction of the underlying RKHS is motivated
anatomically and the basic sources can be attributed functional meaning.

Parameter choice for kCSD The kCSD framework which we have introduced here
is very �exible, one can use many di�erent types of bases. This leads to a question
what is the recommended �rst choice of model space and how to choose parameters for
unknown sources. As our numerical experiments in Section 3 show, Gaussian models give
smaller errors in a larger range of parameters than the step functions, so we recommend
the Gaussians. The optimal value of R for electrodes on regular grid is between 1-2
inter-electrode distances. We expect that even better results can be obtained with basis
adapted to problem at hand. Its construction should be motivated by available anatomical
and functional information or tests on sources generated in computational modeling, if
only possible. E�cient construction of optimal basis for a problem at hand is another
direction worth exploring. One possible approach is the use of cross-validation which we
demonstrated in Section 4 for selection of the regularization constant λ.

Including time dependence As mentioned in Section 2 time dependence of the po-
tentials was not taken into account in this paper. However, LFP data coming from exper-
iments usually have the form of several time series � one for each electrode. Modeling
these time series, relationships between them and incorporating this knowledge in the
estimation may reveal more information about the examined region.

A possible way of extending the framework described in this paper would be to add
time dependence to the basis functions introduced in Section 2. In the simplest case one
could think of basis functions that factorise into the product of two seperate location and
time dependent factors:

b̃i(x, t) = b̃i1(x)̃bi2(t),

where b̃i2(t) could have a 'step' or a Gaussian shape.
If we calculate the potential generated by b̃i in every moment t, we get a set of potential

basis functions bi(x, t). We are therefore free to construct kernels as in (9) and (17), run
the kCSD method and obtain a time dependent CSD estimator.

Direct kCSD method Up till now we have always derived kernels K and K̃ from the
basis functions via equations (9) and (17). One can also try de�ning kernel K directly,
omitting the introduction of basis functions. It is shown in Shawe-Taylor & Christiani
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(2004) (Theorem 3.11) that as long as a kernel function K is positive de�nite, then there
exists an RKHS H and an equivalent mapping φ : R −→ H such that:

K(x,y) = 〈φ(x), φ(y)〉.

We are therefore free to model the potentials with kernels typically used in learning algo-
rithms (e.g. a Gaussian kernel), as presented for instance in Schoelkopf & Smola (2002),
Chapter 2.3. To model CSD it rests to �nd the equivalent cross-kernel. This can be done
regarding the following equation:

K(x,y) = AyK̃(x,y),

where by Ay we denote operator A acting on the second variable, so we can write

K̃(x,y) = [Ay]−1K(x,y).

Calculating K̃ involves inverting operator Ay which is simple in the three dimensional
case where the inverse operator is just the Laplacian. However, in 1D and 2D cases this
operator depends on the model of the tissue in the directions normal to the space spanned
by the electrodes, so its inversion is more involved.

Our preliminary numerical experiments with the 3D case indicate that this `direct
kCSD' method, as we call it, is even faster, very easy to calculate, and is very stable. A
thorough study is underway.

Generalized models of tissue conductivity We have assumed in the analysis con-
stant conductivity. This simpli�es the problem and in view of the lack of available data
on conductivity in many areas, is a natural approach to start. However, as it is now
becoming feasible to measure conductivity more and more precisely and as the changing
conductivity seems to in�uence substantially the �elds Goto et al. (2010) it is necessary to
develop kCSD to incorporate richer models of sources taking into account space-dependent
and perhaps non-scalar conductivity. One important example which calls for a dedicated
approach is that of slices on multielectrode arrays (MEA).

Connection to source reconstruction from EEG CSD reconstruction is similar in
spirit to reconstruction of sources in EEG (Guljarani 1998, He & Lian 2005, Phillips et al.
2005, Nunez & Srinivasan 2006) and ECoG (Freeman 1980, Zhang et al. 2008), however,
since extracellular recordings of LFP are taken much closer to the sources than in the
case of EEG, one builds di�erent models (see the discussion in �¦ski, Pettersen, Tunstall,
Einevoll, Gigg & Wójcik (2011)). Despite the di�erence in physics, we believe that the
same statistical setting can be adapted to the case of human electroencephalography help-
ing in source localization there. The di�erence would be in the basis elements bi(x), as
for EEG one would naturally consider distributions of dipoles. The connection between
the sources and potentials would have to take into account the complication of changing
conductivity in the skull, skin, etc and would probably be the most challenging problem.
Otherwise, the framework presented here should apply.
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A Speci�cation of the sources used in the tests

In this appendix we provide detailed information about the sources used in testing kCSD
method in Section 3.

A.1 `Large sources'

The `large sources' were generated using the following Matlab function:

function f = test_csd(x,y,z)

zz = [0.4; -0.3; -0.1; 0.6];

zs = [0.2; 0.3; 0.4; 0.2];

f1 = 0.5965*exp((-(x-0.1350).^2 - (y-0.8628)^2)/0.4464)*...

exp(-(z-zz(1))^2/zs(1))/exp(-(zz(1))^2/zs(1));

f2 = -0.9269*exp((-2*(x-0.1848).^2 - (y-0.0897)^2)/0.2046)*...

exp(-(z-zz(2))^2/zs(2))/exp(-(zz(2))^2/zs(2));

f3 = 0.5910*exp((-3*(x-1.3189).^2 - (y-0.3522)^2)/0.2129)*...

exp(-(z-zz(3))^2/zs(3))/exp(-(zz(3))^2/zs(3));

f4 = -0.1963*exp((-4*(x-1.3386).^2 - (y-0.5297)^2)/0.2507)*...

exp(-(z-zz(4))^2/zs(4))/exp(-(zz(4))^2/zs(4));

f= f1+f2+f3+f4;

Note that the sources used in this paper have product structure which means that the above
function was evaluated only for z = 0 and we assumed a step pro�le in z variable. More
general sources were considered in �¦ski, Pettersen, Tunstall, Einevoll, Gigg & Wójcik
(2011).

A.2 `Small sources'

Let a, µ1, µ2 and C be the parameters (amplitude, mean, covariance matrix) of the fol-
lowing Gaussian function:

Ga,µ1,µ2,C(x, y) =
a

2π
√

det C
exp

[
−1

2

(
x− µ1

y − µ2

)T

C−1

(
x− µ1

y − µ2

)]
.

The `small sources' dataset was generated by a sum of four such Gaussians with parameters
given in the table below:

Number a µ1 µ2 C

1 0.2 0.2 0.3

(
0.002 0

0 0.008

)
2 −0.25 0.2 0.6

(
0.005 0

0 0.01

)
3 0.24 0.5 0.3

(
0.0024 0

0 0.008

)
4 −0.2 0.5 0.6

(
0.005 0

0 0.01

)
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A.3 Random Gaussian sources

The random Gaussian sources were constructed according to the following algorithm (all
probability distributions are uniform):

1. choose randomly rmin between 0.1 and 0.2, let rmax = 2rmin,

2. choose number n of Gaussian sources, 4 ≤ n ≤ 8,

3. for each source choose amplitude a between −1 and 1, angle ϑ between 0 and 2π,
position of the source (x0, y0) in the square [0, 1.4]2, and σx, σy between rmin and
rmax,

4. the test CSD distribution is equal to the sum of n terms, each of the form

G(x, y) = a exp
[
−xTAx

]
,

where x =

(
x− x0

y − y0

)
, and A =

(
cos2 ϑ
2σ2

x
+ sin2 ϑ

2σ2
y
− sin 2ϑ

4σ2
x

+ sin 2ϑ
4σ2

y

− sin 2ϑ
4σ2

x
+ sin 2ϑ

4σ2
y

sin2 ϑ
2σ2

x
+ cos2 ϑ

2σ2
y

)
.

(see http://en.wikipedia.org/wiki/Gaussian_function ).

A.4 1-D sources

The one-dimensional sources were constructed in the following manner as a mixture of two
Gaussians:

GA1,µ1,σ1,A2,µ2,σ2 = A1 exp

(
−(x− µ1)2

2πσ1

)
+ A2 exp

(
−(x− µ2)2

2πσ2

)
.

The parameter values were:

A1 µ1 σ1 A2 µ2 σ2

1 2 0.5 0.5 7 1

B iCSD is a special case of kCSD

To set the stage let us rewrite iCSD in the language used here. We start from a set of k
LFP measurements: (xi, Vi)

N
i=1,xi ∈ Rd. Then a model of CSD is assumed in the form of

N -parameter distribution

C(x) =
N∑
j=1

Cj b̃j(x).

In all the work so far xi were assumed to form a regular rectangular grid and Ci were
the values of CSD at the nodes of the grid which were to be estimated from the given
potentials. The spatial pro�les b̃i(x) and the associated potentials bi(x) are set by the
dimensionality of the problem and the variant of the method used (step, linear spline,
cubic spline, etc.). For example, in three dimensional spline method b̃i(x) would be spline
interpolated three-dimensional function between grid points, taking values 1 at xi and 0
at xj 6=i with appropriate boundary conditions (�¦ski, Wójcik, Tereszczuk, �wiejkowski,
Kublik & Wróbel 2007). The potential generated by source b̃i(x) is given by Eq. (5). In
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lower dimensionality one has to add a model of sources in the directions not probed by the
electrodes. Thus in the two-dimensional step method (�¦ski, Pettersen, Tunstall, Einevoll,
Gigg & Wójcik 2011), for example, assuming xi ≡ (xi, yi, 0) with interelectrode distance
∆ and step pro�le in the perpendicular direction of the depth H we would have

b̃i(x, y, z) =

{
1 x ∈ (xi − ∆

2
, xi + ∆

2
), y ∈ (yi − ∆

2
, yi + ∆

2
), z ∈ (−H

2
, H

2
)

0 otherwise

with the potentials given by Eq. (22).
In any iCSD variant, the potentials according to the assumed model of sources are

given by V (x) =
∑

j Cjbj(x) with the values measured at a grid point i equal to V (xi) =∑
j Cjbj(xi) = Vi. To �nd the model sources we �rst solve for parameters Cj given the

potentials:

V ≡

 V1
...
VN

 =

 b1(x1) . . . bN(x1)
...

b1(xN) . . . bN(xN)


 C1

...
CN

 =

 bT (x1)
...

bT (xN)


 C1

...
CN


with obvious notation b(x) = [b1(x), . . . , bN(x)]T . Inverting this relation we obtain

C =

 C1
...
CN

 =

 bT (x1)
...

bT (xN)


−1

V.

Then the source are given by

CiCSD(x) =
n∑
j=1

Cj b̃j(x) = b̃T (x)

 bT (x1)
...

bT (xN)


−1

V. (32)

In kCSD framework we have (Eq. (15)): V1
...
VN

 =

 K(x1,x1) . . . K(x1,xN)
...

K(xN ,x1) . . . K(xN ,xN)


 β1

...
βN


=

 bT (x1)
...

bT (xN)

 [ b(x1) . . . b(xN)
]  β1

...
βN


which gives  β1

...
βN

 =
[

b(x1) . . . b(xN)
]−1

 bT (x1)
...

bT (xN)


−1

V. (33)

Then the sources CkCSD(x) according to Eq. (16) are given by

CkCSD(x) =
k∑
i=1

βi

n∑
j=1

bj(xi)̃bj(x) = b̃T (x)
[

b(x1) . . . b(xN)
]  β1

...
βN

 (34)
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Using (33) and (34) we obtain

CkCSD(x) = b̃T (x)
[

b(x1) . . . b(xN)
] [

b(x1) . . . b(xN)
]−1

 bT (x1)
...

bT (xN)


−1

V

= b̃T (x)

 bT (x1)
...

bT (xN)


−1

V = CiCSD(x). (35)
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