
Behavior Research Methods manuscript No.
(will be inserted by the editor)

PyMICE – a Python library for analysis of
IntelliCage data

Jakub M. Dzik · Alicja Puścian ·
Zofia Mijakowska · Kasia Radwanska ·
Szymon Łęski

the date of receipt and acceptance should be inserted later

Abstract IntelliCage is an automated system for recording the behavior of a
group of mice housed together. It produces rich, detailed behavioral data call-
ing for new methods and software for their analysis. Here we present PyMICE,
a free and open-source library for analysis of IntelliCage data in the Python
programming language. We describe the design and demonstrate the use of the
library through a series of examples. PyMICE provides easy and intuitive ac-
cess to IntelliCage data, and thus facilitates the possibility of using numerous
other Python scientific libraries to form a complete data analysis workflow.

Keywords Python · library · mice · behavior · analysis · IntelliCage

Introduction

In recent years, a number of automated environments for behavioral testing
have been developed, based on RFID (Dell’omo, Shore, & Lipp, 1998; Galswor-
thy et al., 2005; Daan et al., 2011; Puścian et al., 2016) or video tracking of
animals (de Chaumont et al., 2012; Weissbrod et al., 2013; Shemesh et al.,
2013; Pérez-Escudero, Vicente-Page, Hinz, Arganda, & de Polavieja, 2014).
Such automated systems have many advantages compared to the traditional
behavioral tests, such as the reduction of the animal stress caused by isola-
tion and handling (Heinrichs & Koob, 2006; Sorge et al., 2014), the possibility

J. M. Dzik · A. Puścian · S. Łęski
Department of Neurophysiology, Nencki Institute of Experimental Biology of Polish
Academy of Sciences, Warsaw, Poland

Z. Mijakowska · K. Radwanska
Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Bi-
ology of Polish Academy of Sciences, Warsaw, Poland

S. Łęski
E-mail: s.leski@nencki.gov.pl

2 Jakub M. Dzik et al.

of studying social interactions in group-housed animals (Kiryk et al., 2011),
the possibility of long-term studies, and easier standardization of protocols in
turn leading to better reproducibility of results between laboratories (Crabbe,
Wahlsten, & Dudek, 1999; Chesler, Wilson, Lariviere, Rodriguez-Zas, & Mogil,
2002; Krackow et al., 2010; Codita et al., 2012; Morrison, 2014; Vannoni et
al., 2014).

The system we are particularly interested in is the IntelliCage system (NewBehavior
AG, 2011; Kiryk et al., 2011; Radwańska & Kaczmarek, 2012; Puścian et al.,
2014; Mijakowska et al., 2015) (see Fig. 1), which is increasingly popular in
behavioral research on rodents (TSE Systems International Group, 2016).

The system outputs a large amount of data describing the behavior of
the mice in the conditioning corners of the cage. A typical experiment yields
10,000–100,000 visits recorded during several weeks or months. Such large data
call for development of data analysis methods and software. One way to address
the need of data analysis is to develop a dedicated application, preferably with
a graphical user interface (GUI), which would allow researchers to inspect the
data and extract relevant quantities interactively. In fact, such an application,
called Analyzer, is provided with the IntelliCage system. While an interactive
GUI-based program for data analysis may be useful, it does have certain lim-
itations. In the context of scientific research, perhaps the most severe limita-
tion is poor reproducibility of the analysis, unless strict measures are taken to
record every single action of the user. Moreover, there is usually no automated
way to perform exactly the same analysis on a different dataset, and repeating
the analysis manually is very time-consuming and highly error-prone. Another
inconvenience of ready-made programs is that they are typically limited to a
predefined set of analysis methods, and not easily extendable.

Custom data analysis programs (e.g., scripts) fall at the opposite end of
the spectrum than GUI programs. First, the most obvious advantage of such
programs is the essentially unlimited possibility of implementing specialized
analysis methods and applying them much better (in terms of calculation
speed, precision and robustness) than a human.

Second, a noninteractive program (written in any programming language)
running in batch mode is, by definition (Hoare, 1969; Turing, 1937; Floyd,
1967; McCarthy, 1963), an exhaustive specification of the analysis. In contrast,
a plain language description usually included in a Methods section of a journal
article may be ambiguous or not up-to-date. The voices calling for providing
the data analysis workflows together with journal publications date at least
two decades back (Buckheit & Donoho, 1995): ‘an article about computational
science in a scientific publication is not the scholarship itself, it is merely
advertising of the scholarship. The actual scholarship is the complete software
development environment and the complete set of instructions which generated
the figures.’

Finally, one of the advantages of using an automated behavioral setup is
the possibility of high-throughput screening by running the same protocol for
a number of mice cohorts (for example treatment and control groups and/or
different strains of mice (Puścian et al., 2014)). Manual processing of each

PyMICE – a Python library for analysis of IntelliCage data 3

Fig. 1 IntelliCage system. The system is composed of one or more cages (A, B). Through
openings (a) mice can access bottles (b) in a learning chamber (c; C, D). Access to the
bottles is controlled by programmable door in smaller openings in the sides of the chamber
(d). Credits: A, C – Maria Nowicka, JD; B – Anna Mirgos, D – SŁ.

dataset separately is both tedious and prone to errors. Batch-processing using
a data analysis script is an obvious remedy, as it allows for repetition of exactly
the same steps of analysis.

The only drawback is that the entry threshold for data analysis using a pro-
gramming language is much higher, as significant effort is required to learn the
programming language and necessary technical details (e.g., the data format).
Our goal here is to lower this threshold by providing an easy and intuitive
way to access the IntelliCage data in the Python programming language (van
Rossum, 1995).

This paper is organized as follows: first, we briefly describe the IntelliCage
system. Next, we introduce PyMICE through a series of examples and pro-
vide pointers to further documentation. We conclude with a short section on
technical details and a discussion.

IntelliCage system

IntelliCage (Fig. 1) is an automated, computer-controlled RFID system for
(possibly long-term) monitoring of groups of mice (Galsworthy et al., 2005;
Krackow et al., 2010; Puścian et al., 2014). The mice are housed in one or
more polycarbonate cages (of size 55 x 37.5 x 20.5 cm; Fig. 1 A, B). A cage
can house a group of up to 16 mice. Each mouse is tagged with an RFID
transponder.

The key components of the system are learning chambers (Fig. 1 c, C, D)
located in the corners of cages (for brevity, we will refer to the chambers simply
as ‘corners’). Each corner can be accessed through a circular opening (30 mm
in diameter; Fig. 1 a), with an embedded RFID antenna. By design, only one
mouse at a time can enter a corner. Each corner contains two smaller (13 mm
in diameter; Fig. 1 d) openings, through which a mouse can access different

4 Jakub M. Dzik et al.

drinking bottles (Fig. 1 b). The access to the drinking bottles is controlled
using programmable doors in the smaller openings.

A broad range of different experiment protocols can be implemented in
the IntelliCage (Knapska et al., 2006; Kiryk et al., 2011; Endo et al., 2011;
Radwańska & Kaczmarek, 2012; Knapska et al., 2013; Smutek et al., 2014;
Puścian et al., 2014; Vannoni et al., 2014). The system can be programmed to
open the doors on specific conditions, for instance, if a specific mouse enters
the corner or if a specific nosepoke pattern is performed. Also, an air puff in
the back may be delivered to the mouse as a punishment.

The IntelliCage system records the visits of each mouse to a particular
corner and also tracks the nosepokes – which lead to accessing the drinking
bottles. When the mouse drinks from a bottle, the number of licks taken
is also recorded. The events (visits and nosepokes) registered by the system
are stored on a computer as a series of records. Each visit record contains,
for example, the RFID transponder number of a given mouse, the cage and
corner, and the time bounds of the visit. Further, nosepokes during the visit
are also stored, along with time boundaries and the number of licks recorded,
etc.

The system periodically logs the environmental conditions (ambient illu-
mination and temperature) in every cage connected. It also logs other relevant
events, such as: starts or ends of recording, errors, warnings, and hardware
events (e.g., concerning state of the doors).

PyMICE library

The IntelliCage system enables researchers to use sophisticated experimental
protocols and thus explore behavioral phenomena inaccessible in classic, non-
automated behavioral tests. However, in many cases, the analysis of data from
such experiments poses a serious challenge. First, in some instances, manual
analysis performed in the manufacturer’s software (Analyzer) would simply
take too much time. For instance, analyzing data from experiments in which
one is interested in a particular time frame with respect to a stimulus pre-
sented in the corner would be extremely time-consuming. If, for example, the
availability of a reward is signaled by LEDs in a corner, and the diodes are
only lit up in a specific time frame, then one would be naturally interested
in, say, number of nosepokes performed before, during, and after the visual
stimulus. Such information can-not be extracted from Analyzer in an auto-
mated way, and therefore the researcher would have to inspect each of the
hundreds or thousands of visits manually. Another case in which it is hard
to obtain the relevant data directly from Analyzer are protocols assessing im-
pulsiveness of individual subjects by employing progressive ratio of behaviors
(e.g., nosepokes) needed to obtain a reward. On the other hand, such protocols
are useful for modeling symptoms of e.g. addiction (Radwańska & Kaczmarek,
2012; Mijakowska et al., 2015).

PyMICE – a Python library for analysis of IntelliCage data 5

A solution to this problem is to write custom software for automated data
analysis. PyMICE is a free and open-source library that makes it easier to
access and analyze IntelliCage data in the Python programming language.

Moreover, PyMICE is more suitable than the Analyzer software when it
comes to the analysis of more sophisticated experimental designs (Endo et al.,
2011; Knapska et al., 2013). Namely, it allows for the comprehensive analysis
of variables than may not be computed in Analyzer. Publication of Knapska
et al. from 2013 is an example of how highly specified behavioral assessment –
in this case choosing between nosepoking to reward vs. to a neutral stimulus,
performed right after entering a corner – might be implemented to identify
neuronal circuits underlying specific cognitive deficits. The analysis in that
paper was done manually, which required substantial effort. PyMICE facili-
tates drawing such conclusions by enabling experimenters with an easy access
to highly specific parameters describing subjects’ behavioral performance.

For those reasons, we argue that PyMICE is a convenient solution to oth-
erwise time-consuming data analysis and – more importantly – a valuable tool
for in-depth analysis of previously inaccessible elements of murine behavior.

One of the advantages of using the Python programming language is that a
well-written Python program is readable to users. In fact, readability is stressed
as one of the core Python principles (Peters, 2004), which we have strived to
follow in the design of PyMICE. Our library provides IntelliCage data as a
collection of intuitively designed data structures (Fig. 2; Table 1), mirroring
records written by the IntelliCage control software: most of the record fields
are represented by attributes of the same or corresponding name. Also, auxil-
iary properties are provided, such as the .Door property of a Nosepoke object
(see Fig. 2) translating integer value of the .Side attribute to 'left' and
'right' text strings. Manipulating such structures is straightforward and nat-
ural, therefore shifting the programmer’s focus from technical details of the file
format to the data analysis itself. The data structures are readonly objects1,
which supports the functional programming paradigm.

PyMICE operates on ZIP archives saved by the IntelliCage software con-
trolling the experiment. Data from several recording sessions may be easily
merged and analyzed together. All visits and nosepokes present in the raw
data are loaded and presented to the user without any implicit filtering. Note
that in some cases this leads to different results than those obtained with the
Analyzer software bundled with the IntelliCage. One specific case we are aware
of is that Analyzer (v. 2.11.0.0) omits some of the nosepokes present in the
raw data, leading to potentially significant underestimation of the measured
quantities (the worst case in the data we analyzed was 480 licks of a single
mouse missing within a 6-h-long period of a liquid consumption study – 31%
of the total recorded number).

The PyMICE library also facilitates automatic validation of the loaded
data. A collection of auxiliary classes is provided for that purpose. Currently,

1 The two exceptions are: the Animal semi-mutable class (the .Sex attribute might be updated if
None; the .Notes attribute might be extended) and the Group mutable class.

6 Jakub M. Dzik et al.

Fig. 2 Visualization of PyMICE data structures. To investigate visit events recorded
by the IntelliCage system, a list of Visit structures is obtained from the data object by
the first command (top right panel). To focus on a third visit, the next command selects its
item of index 2 (pale blue). To check the name of the mouse performing the visit, the third
command accesses the .Animal attribute of the visit (pale red). The attribute is an Animal
structure and the next command prints its .Name attribute (yellow).
To further investigate which door was nosepoked during the visit, the .Nosepokes attribute
(a tuple) must be accessed. The fifth command selects the first item (i.e., index 0) of the
tuple, which is a Nosepoke structure (pink). The last command prints its .Door property
(pale green).

Table 1 Data structures. The data structures represent particular records written by
the IntelliCage control software. Most fields are represented by attributes of the same or
corresponding name.

IntelliCage data entity Data structure (Python class) Examples of attributes
visit event Visit .Start, .Corner, .Animal, .Nosepokes
nosepoke event Nosepoke .Start, .Side, .Visit
sample of environmental condition EnvironmentalConditions .DateTime, .Illumination, .Temperature
log entry LogEntry .DateTime, .Type, .Notes
hardware event HardwareEvent .DateTime,.Type, .State
animal Animal .Name, .Sex, .Tag
group of animals Group .Name, .Animals

possible RFID and lickometer failures may be detected automatically. Such
events are reported in the IntelliCage logs, respectively, as Presence Errors
and Lickometer Warnings. The set of detectable abnormal situations may be
easily extended.

Examples

In this section, we introduce PyMICE through a series of examples illustrating
various aspects of the library.
In Example 1 we show how to find numbers of visits of a specific mouse in
which the first nosepoke was performed to either the left side or the right side
of the corner. This can be achieved in PyMICE in just six lines of code.
Example 2 is an extension of Example 1 to analysis of actual experimental data,
obtained with a protocol described in (Knapska et al., 2013). In this example,

PyMICE – a Python library for analysis of IntelliCage data 7

we also present a convention for defining the timeline of the experiment.
In Example 3 we reproduce a plot from an earlier paper (Puścian et al., 2014).
The plot shows how two cohorts of mice learn the location of the reward
over time (place preference learning). This kind of analysis can be performed
using Analyzer, the GUI application provided with IntelliCage; however, using
PyMICE we can quickly repeat the analysis for new cohorts with minimal
effort.
Example 4 illustrates how the Python programming language can be used
to extend the repertoire of data analysis methods. In this example we show
how to extract the information about intervals between visits of different mice
to the same corner. This kind of information would be very hard (or even
impossible) to obtain using Analyzer.

To improve readability of Examples 2–4, we have omitted some generic code
and focused on PyMICE-specific snippets. Full code of the examples is pro-
vided as online supplementary material at https://github.com/Neuroinflab/
PyMICE_SM/tree/examples.

Before the examples can be run, the example data have to be saved to the
current working directory. This can be done from within PyMICE:

>>> import pymice as pm
>>> pm.getTutorialData(quiet=True)

In addition to the examples presented here, we have prepared several tu-
torials available online at the PyMICE website (Dzik & Łęski, 2017b). The
tutorials are in Jupyter Notebook format (Project Jupyter, n.d.) and may
be downloaded for interactive use. The examples and the tutorials are pro-
vided as a hands-on introduction to PyMICE and serve as a starting point for
further exploration. Additionally, online documentation is provided (Dzik &
Łęski, 2017a). PyMICE objects and their methods are also documented with
docstrings available with Python built in help() function.

Example 1: minimal example – extracting the side of the first nosepokes in six
lines of code

This example shows how to obtain the number of visits in which a mouse
performed the first nosepoke to the left side or the right side of the corner.

In the first line, the library is imported. We use pm as an abbreviated name
of the library. In the second line, the example data are loaded from a single
IntelliCage file. In the third line, a list of all visits of a mouse named ‘Jerry’
is obtained.2 Note that a list of names is passed as an argument.

Next, the first nose poke is selected from every visit v (if any nosepoke was
made during that visit). Note that the condition if v.Nosepokes is met if
the list v.Nosepokes is not empty.

2 The mice are referred to by names defined in the design of IntelliCage experiment, not by the RFID
tag numbers.

https://github.com/Neuroinflab/PyMICE_SM/tree/examples
https://github.com/Neuroinflab/PyMICE_SM/tree/examples

8 Jakub M. Dzik et al.

The side the mouse poked is obtained as nosepoke.Door in the fifth line
of the code. This returns either 'left' or 'right', thus disregarding the
information about the corner in which the nosepoke was performed.

Finally, in the last line, the number of visits with the first nosepoke to the
left and the right side is calculated and displayed.

>>> import pymice as pm
>>> data = pm.Loader('demo.zip')
>>> visits = data.getVisits(mice=['Jerry'])
>>> firstNps = [v.Nosepokes[0] for v in visits if v.Nosepokes]
>>> sides = [nosepoke.Door for nosepoke in firstNps]
>>> print sides.count('left'), sides.count('right')
149 163

Example 2: full analysis example – side discrimination task

The previous example is a simplified version of an analysis performed to assess
place memory during the discrimination training, as described in Knapska et
al. (2013). In this example, we present the analysis in more detail, including
the estimation of how the mice performance in the discrimination task changed
over time.

The experimental setup was the following: during the first several days
of the experiment, the mice were adapted to the cage. In this phase, water
was freely available in all corners, at both sides of each corner, and the doors
to the bottles were open. Next, in nosepoke adaptation (NPA) phase of the
experiment, mice had to perform nosepokes to access the water bottles. The
next phase was place preference learning (PP). In this phase, every mouse
could access bottles in one corner only. The mice were assigned to different
corners as evenly as possible to prevent crowding and learning interference.
The final experimental phase was the discrimination task (DISC). In this
phase, the mice were presented with two bottles in the same corner to which
they were assigned during the PP phase. However, in contrast to the PP
phase, one bottle contained tap water, and the other 10% sucrose solution
(highly motivating reward). As previously, during each visit the access was
granted to both bottles. The percentage of visits in which the first nosepoke
was performed to the bottle containing reward was calculated as a measure of
memory.

We start by loading the data. Note that some technical details not cru-
cial for understanding the example (like importing the libraries) are hidden.
The full code is available at https://github.com/Neuroinflab/PyMICE_SM/
blob/examples/example2.py.

data = pm.Loader('FVB/2016-07-20 10.11.11.zip')

Next, we need to know the start- and end-points of the experimental phases
we are interested in. We defined these phases in an experiment timeline file.

https://github.com/Neuroinflab/PyMICE_SM/blob/examples/example2.py
https://github.com/Neuroinflab/PyMICE_SM/blob/examples/example2.py

PyMICE – a Python library for analysis of IntelliCage data 9

The format of this file is a derivative of the INI format. The necessary in-
formation required about a phase are: its name (PP dark in the following
example), boundaries (start and end properties) and timezone of the bound-
aries (tzinfo property):

[PP dark]
start = 2016-07-20 12:00
end = 2016-07-21 00:00
tzinfo = Etc/GMT-1

We load the experiment timeline file into a Timeline object, and define a
list of phases of interest.

timeline = pm.Timeline('FVB/timeline.ini')

PHASES = ['PP dark', 'PP light',
'DISC 1 dark', 'DISC 1 light',
'DISC 2 dark', 'DISC 2 light',
'DISC 3 dark', 'DISC 3 light',
'DISC 4 dark', 'DISC 4 light',
'DISC 5 dark', 'DISC 5 light']

To analyze the data, we define a function getPerformanceMatrix(), which
returns a matrix of performance (defined as the fraction of first nosepokes in
the accessible corner, which are performed to the rewarded side) of all mice
in the system. Each row in this matrix contains the performance data of one
mouse, and each column corresponds to one phase of the experiment for all
mice.

def getPerformanceMatrix():
return [getPerformanceCurve(mouse) for mouse in data.getMice()]

For every mouse, the getPerformanceCurve() function is called to create a
row corresponding to the performance of that mouse across subsequent phases.

def getPerformanceCurve(mouse):
return [getPerformance(mouse, phase) for phase in PHASES]

We use the getPerformance() function to create a list of the mouse’s
performance measures (fraction of first nosepokes in the accessible corner,
which are performed to the rewarded side) in subsequent phases.

def getPerformance(mouse, phase):
start, end = timeline.getTimeBounds(phase)
visits = data.getVisits(mice=[mouse], start=start, end=end)
accessibleCornerVisits = filter(isToCorrectCorner, visits)
return calculatePerformance(accessibleCornerVisits)

def isToCorrectCorner(visit):
return visit.CornerCondition > 0

In the getPerformance() function, we obtain all visits performed by the
mouse during the phase. Visits to the accessible corner are passed to the

10 Jakub M. Dzik et al.

PP dark

PP lig
ht

DISC 1 dark

DISC 1 lig
ht

DISC 2 dark

DISC 2 lig
ht

DISC 3 dark

DISC 3 lig
ht

DISC 4 dark

DISC 4 lig
ht

DISC 5 dark

DISC 5 lig
ht

experiment phase

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

%
 o

f
co

rr
e
ct

 r
e
sp

o
n
se

s

Fig. 3 Reward-motivated discrimination learning in FVB mice (n=11). The
chart depicts efficient learning of reward position, as measured by the percentage of first
nosepokes made to the bottle containing reward right after entering the corner. Error bars
are standard error of the mean.

calculatePerformance() function for further analysis. It is easy to filter
the visits – in the IntelliCage experiment design the accessible corner was
marked as ‘correct’. Thus, visits to the corner have positive value of the
.CornerCondition attribute of the Visit object.

def calculatePerformance(visits):
firstNps = [v.Nosepokes[0] for v in visits if v.Nosepokes]
successes = [isToCorrectSide(nosepoke) for nosepoke in firstNps]
return successRatio(successes)

def isToCorrectSide(nosepoke):
return nosepoke.SideCondition > 0

To calculate the performance, we check whether the first nosepoke of every
visit was to the rewarded side. The rewarded side was marked as ‘correct’ in
the experiment design. Thus, nosepokes to the correct side have positive value
of the .SideCondition attribute of the respective Nosepoke object. The side
which was rewarded in DISC phases was marked as ‘correct’ already during
the PP phases (when both bottles in a corner contained the same liquid), so
that the relevant fraction can be easily extracted also from the PP phases.
Based on the counts of first nosepokes performed to each of the sides, we
calculate the success ratio (code omitted here).

With all the functions defined, we obtain the performance matrix and plot
it averaged across mice in Fig. 3 (plotting code omitted here).

PyMICE – a Python library for analysis of IntelliCage data 11

Example 3: reproducibility – batch analysis of data

In this example, we analyze results of a place preference experiment described
in detail in (Puścian et al., 2014). Similarly as in Example 2, the experiment
comprised several adaptation and learning phases, in which the mice could
access either all or just selected drinking bottles. In the nosepoke adaptation
phase (NPA) all the mice had access to tap water in all corners. In order
to obtain water, the mice were required to open the door by performing a
nosepoke. Next, in the place preference learning phase (Place Pref), the access
to the drinking bottles was (as in the previous example) restricted to just one
corner for each mouse. Tap water was replaced with 10% sucrose solution to
increase the motivation of the mice to seek access to the drinking bottles. We
are interested in how the percentage of visits to the rewarded corner changed
over time.

The data used here are a subset of data presented in (Puścian et al., 2014),
and in the final figure obtained in this example (Fig. 4) we show two learning
curves from Fig. 3A in (Puścian et al., 2014) (cohorts A and B). Each curve
represents an average performance (defined as a fraction of visits to the re-
warded corner) of a cohort of mice in eight subsequent, 12-h-long phases of
the experiment.

As the code here is quite similar to the code of the previous example, we
will focus on the major differences between the examples. We start by loading
the data, timeline and PHASES objects from the relevant dataset (different
than in Example 2; code omitted here, the full code is available at https://
github.com/Neuroinflab/PyMICE_SM/blob/examples/example3.py).

As in the previous example, we define a function returning a performance
matrix (defined here as the fraction of visits to the rewarded corner): getGroupPerformanceMatrix().

def getGroupPerformanceMatrix(groupName):
group = data.getGroup(groupName)
return [getPerformanceCurve(mouse) for mouse in group.Animals]

Unlike in the previous example, the matrix here is limited to only one group
of mice. The group is defined in the IntelliCage experiment design. Information
about its members is contained in a Group object, which we request in the first
line of the function.

https://github.com/Neuroinflab/PyMICE_SM/blob/examples/example3.py
https://github.com/Neuroinflab/PyMICE_SM/blob/examples/example3.py

12 Jakub M. Dzik et al.

The getPerformance() and calculatePerformance() functions are sim-
pler than in the previous example, as neither filtering of visits nor extracting
of nosepokes is necessary.

def getPerformance(mouse, phase):
start, end = timeline.getTimeBounds(phase)
visits = data.getVisits(mice=[mouse], start=start, end=end)
return calculatePerformance(visits)

def calculatePerformance(visits):
successes = [isToCorrectCorner(v) for v in visits]
return successRatio(successes)

To calculate the performance of a mouse during a phase, we check – for
each visit – whether the visit was to the rewarded corner. In the IntelliCage
experiment design, the rewarded corner was marked as ‘correct’. Visits to the
‘correct’ corner have positive value of the .CornerCondition attribute of the
Visit object.

With all the functions defined, we obtain a performance matrix and plot
it averaged across mice (Fig. 4) for each cohort (groups C57A and C57B)
separately. Note that analyzing several cohorts reduces to a loop over the
cohorts included in the analysis.

>>> with DecoratedAxes() as ax:
... for group in ['C57 A', 'C57 B']:
... performance = getGroupPerformanceMatrix(group)
... ax.plotGroupAverages(performance, group)
...

Example 4: implementing new behavioral measures – intervals between visits

In this example, we illustrate the possibility of programming new data analysis
methods in Python. We are going to investigate durations of intervals between
subsequent visits of mice to a corner. The assumption here is that the distri-
bution of such intervals is a measure of interactions between the mice. In this
example we will just calculate the measure without discussing it much, but we
believe that such measure, or a variant of it, would be useful in studying social
behaviors or social structure of the group. In particular, one could study which
mice follow which, and therefore look into potential modulation of learning or
cognitive abilities by such behaviors as following or imitation.

We want to plot histograms of interval durations for each corner separately,
and we restrict the analysis to just one phase: Place Pref 3 dark. Such analysis
would be very hard or impossible to perform using Analyzer, and requires
the use of some kind of programming language, which is the main reason we

PyMICE – a Python library for analysis of IntelliCage data 13

NPA 2 dark

NPA 2 lig
ht

Place Pref 1
 dark

Place Pref 1
 lig

ht

Place Pref 2
 dark

Place Pref 2
 lig

ht

Place Pref 3
 dark

Place Pref 3
 lig

ht

experiment phase

0%

10%

20%

30%

40%

50%

60%

70%

%
 o

f
v
is

it
s

to
 s

u
g
a
r

co
rn

e
r

C57BL/6 - PLACE PREFERENCE LEARNING

C57 A
C57 B

Fig. 4 Place preference learning of two cohorts of C57BL6 mice in an IntelliCage
experiment. The plot presents the cohort-averaged percentage of visits to a rewarded
corner during consecutive phases, each lasting 12 h. During the place preference phases
(Place Pref), each mouse is provided access to sweetened water in one selected corner of the
IntelliCage. The fraction of visits to that corner is close to the chance level (25%) during
the NPA (nosepoke adaptation) phases when mice are provided access to plain water in all
corners, and increases over time after the reward (sweetened water) is introduced. Error
bars are standard error of the mean.

include it in the paper. Below we show that the analysis in Python using
PyMICE is quite straightforward.

We begin by selecting all visits performed during the phase. The order
parameter of the .getVisits() method makes the returned sequence ordered
with respect to the .Start attribute.

start, end = timeline.getTimeBounds('Place Pref 3 dark')
visits = data.getVisits(start=start, end=end, order='Start')

14 Jakub M. Dzik et al.

0

20

40

60

co
rn

e
r

#
1

cage #1 cage #2

0

20

40

60

co
rn

e
r

#
2

0

20

40

60

co
rn

e
r

#
3

10-1 100 101 102 103

intervisit interval [s]

0

20

40

60

co
rn

e
r

#
4

10-1 100 101 102 103

intervisit interval [s]

Fig. 5 Frequencies of intervisit intervals in the analyzed phase. Histograms are
plotted for each corner of each cage separately. The bins are equally spaced in a logarithmic
scale. The dotted vertical lines represents intervals of one second, minute and hour (from
left to right, respectively).

This list contains visits performed to all corners of the cage. Next we need
to extract subsequences of visits performed to the same corner in the same
cage.

def getSubsequence(visits, cage, corner):
return [v for v in visits

if v.Cage == cage and v.Corner == corner]

Since the order of the subsequence is preserved, it is then easy to determine
intervisit intervals.

def getIntervisitIntervals(visits):
return [(b.Start - a.End)

for (a, b) in zip(visits[:-1], visits[1:])]

The histograms are shown in Fig. 5. As in the previous examples, the
details of plot generation are hidden. The full code is available at https://
github.com/Neuroinflab/PyMICE_SM/blob/examples/example4.py.

Technical details

We recommend to use the PyMICE library with the Anaconda Python distri-
bution (Continuum Analytics, 2015).

The library requires NumPy (van der Walt, Colbert, & Varoquaux, 2011;
Oliphant, 2007), matplotlib (Hunter, 2007), dateutil (Niemeyer, Pieviläinen, &

https://github.com/Neuroinflab/PyMICE_SM/blob/examples/example4.py
https://github.com/Neuroinflab/PyMICE_SM/blob/examples/example4.py

PyMICE – a Python library for analysis of IntelliCage data 15

de Leeuw, n.d.) and pytz (Bishop, n.d.) Python packages to be installed in the
system.

The library itself is available as a package from the Python Package Index
(PyPI) (Jones, 2002; Python Software Foundation, n.d.) for Python version
3.3, 3.4, 3.5 and 3.6, as well as 2.7. It can be installed with either pip (Python
Packaging Authority, n.d.):

$ pip install PyMICE

or easy_install (Python Packaging Authority, 2017):

$ easy_install PyMICE

A bleeding edge version of the library might be also downloaded from
https://github.com/Neuroinflab/PyMICEGitHub (GitHub Inc., n.d.) repos-
itory.

Terms of use

PyMICE library is open-source and is available for free under GPL3 license (Free
Software Foundation, 2007); we ask that this article is cited and resource
identifier (Ozyurt, Grethe, Martone, & Bandrowski, 2016) for the library
(RRID:nlx_158570) is provided in any published research making use of PyMICE.

Discussion

In this paper we have introduced PyMICE, a software library which allows to
access and analyze data from IntelliCage experiments. The library has been
developed to facilitate automated, reproducible, and customizable analysis of
large data generated by the IntelliCage system. Analyzer, the software bundled
with the IntelliCage, does not meet these requirements, as it was designed
with a different purpose in mind (NewBehavior AG, 2011): ‘The “Analyzer” is
intended to give an overview of the results [...] The function of “Analyzer” is to
provide the user with data merging, extraction, and filtering tools in order to
generate data sets appropriate for in-depth graphical and statistical analyses.’

One of the features of the IntelliCage system is that very different experi-
ments are possible, depending on the subject of the research. Some protocols
focus on assessment of subjects’ ability of reward location (Knapska et al.,
2013) and behavioral sequence (Endo et al., 2011) learning. Other protocols
are dedicated to measure addiction-related behavior like subject impulsive-
ness (Radwańska & Kaczmarek, 2012; Mijakowska et al., 2015). Quite often a
new experiment requires a completely new approach to data analysis. Rather
than trying to predict the specific needs of the prospective users, we decided
to provide simple, intuitive and user-friendly interface for accessing the data.

https://github.com/Neuroinflab/PyMICE

16 Jakub M. Dzik et al.

Such interface allows a scientific programmer to tailor dedicated software fo-
cusing on the essence of the analysis instead of the technical details. To our
knowledge, PyMICE is the only publicly available solution for analysis of In-
telliCage data in a scripting language.

PyMICE is written in the Python programming language. Our choice of
Python was directed by the same factors which made it a popular choice for
scientific computing in general. Python is free, open-source, relatively easy
to learn, and is supported by a number of scientific tools and libraries, such
as: NumPy and SciPy (Oliphant, 2007), IPython (Perez & Granger, 2007),
matplotlib, Pandas (McKinney, 2010), etc. We believe that PyMICE will be
a useful addition to that collection.

The number of IntelliCage-based publications is increasing in recent years (TSE
Systems International Group, 2016), but the system is still relatively little
known. We believe that one of the factors handicapping the popularity of In-
telliCage, or similar automated setups, is the lack of a proper software ecosys-
tem. We hope that availability of PyMICE will have a stimulating effect on
the adoption of automated behavioral systems. While the current (at the time
of the publication) version of the library only supports the IntelliCage, the
library may be generalized to other behavioral systems. Data from any system
capturing point events (such as visits to specific locations – as opposed to e.g.
continuous trajectories of the animals) could be presented to the user in a simi-
lar way as the IntelliCage data. Specifically, representing each behavioral event
as a Python object with relevant attributes would allow for intuitive manipula-
tion of data and for easy extraction of the quantities which are analyzed. The
PyMICE library is open source (Free Software Foundation, 2007) and pub-
licly available at GitHub, the largest open source software platform (Gousios,
Vasilescu, Serebrenik, & Zaidman, 2014), therefore the extensions to other
behavioral systems can be contributed by the community.

A crucial feature of PyMICE is the possibility of creating automated data
analysis workflows. Such workflows are useful, for example, when the same
protocol is applied to multiple groups of animals – this is a very common case,
as most experiments will have at least one experimental and one control group.
A workflow defined in a Python script may be used to perform exactly the same
analysis on every available dataset, which both saves effort and greatly reduces
possibility of mistakes as compared to analyzing each dataset manually.

We also believe that popularization of such workflows would lead to better
research reproducibility. Current efforts for reproducible research are mostly
focused on improving the experimental procedures, statistical analysis, and the
publishing policy (Begley & Ellis, 2012; Begley, 2013; Halsey, Curran-Everett,
Vowler, & Drummond, 2015). However, unclear or ambiguous description of
data analysis is also given as a factor contributing to poor reproducibility of sci-
entific research (Ince, Hatton, & Graham-Cumming, 2012). A (non-interactive)
computer program is a precise, formal and unambiguous description of the
analysis performed. We hope that PyMICE could become a common platform
for implementing and sharing workflows for analysis of data from the Intel-

PyMICE – a Python library for analysis of IntelliCage data 17

liCage (or similar) system, and make data analysis using scripts more accesible
and more popular.

The paper itself is a proof of the concept of the ‘really reproducible’ re-
search (Buckheit & Donoho, 1995) – writing it we followed the literate pro-
gramming paradigm (Knuth, 1984). Every of the presented results of analysis
was generated by a Python + PyMICE workflow embedded in the LATEX (Lamport,
1986) source code of the document (see the Statement of reproducibility below
for details).

Statement of reproducibility(Peng, 2011)

All presented results may be reproduced with the Pweave tool (Pastell, n.d.)
v. 0.25 (Pastell, O’Leary, & Abukaj, 2016), an interpreter of Python program-
ming language v. 2.7.12, PyMICE v. 1.1.1 (Dzik, Łęski, & Puścian, 2017),
NumPy v. 1.11.3,matplitlib v. 1.5.1, dateutil v. 2.5.3 and pytz v. 2016.6.1. (Wilson
et al., 2014)

Acknowledgements JD, KR and SŁ supported by a Symfonia NCN grant UMO-2013/
08/W/NZ4/00691. AP supported by a grant from Switzerland through the Swiss Contribu-
tion to the enlarged European Union (PSPB-210/2010 to Ewelina Knapska and Hans-Peter
Lipp). KR and ZM supported by an FNP grant POMOST/2011-4/7 to KR.

References

Begley, C. G. (2013, May). Reproducibility: Six red flags for suspect work.
Nature, 497 (7450), 433–434. doi: 10.1038/497433a

Begley, C. G., & Ellis, L. M. (2012, March). Drug development: Raise stan-
dards for preclinical cancer research. Nature, 483 (7391), 531–533. doi:
10.1038/483531a

Bishop, S. (n.d.). pytz – World Timezone Definitions for Python. Online.
Retrieved 15th-Jan-2016, from https://dateutil.readthedocs.org/

Buckheit, J. B., & Donoho, D. L. (1995). WaveLab and Reproducible Re-
search. In A. Antoniadis & G. Oppenheim (Eds.), Wavelets and statis-
tics (Vol. 103, pp. 55–81). New York, NY: Springer. Retrieved from
http://dx.doi.org/10.1007/978-1-4612-2544-7_5 doi: 10.1007/
978-1-4612-2544-7_5

Chesler, E. J., Wilson, S. G., Lariviere, W. R., Rodriguez-Zas, S. L., &
Mogil, J. S. (2002, December). Identification and ranking of genetic
and laboratory environment factors influencing a behavioral trait, ther-
mal nociception, via computational analysis of a large data archive.
Neuroscience & biobehavioral reviews, 26 (8), 907–923. doi: 10.1016/
S0149-7634(02)00103-3

Codita, A., Mohammed, A. H., Willuweit, A., Reichelt, A., Alleva, E., Branchi,
I., . . . Krackow, S. (2012, May). Effects of spatial and cognitive en-
richment on activity pattern and learning performance in three strains

https://dateutil.readthedocs.org/
http://dx.doi.org/10.1007/978-1-4612-2544-7_5

18 Jakub M. Dzik et al.

of mice in the IntelliMaze. Behavior genetics, 42 (3), 449–460. doi:
10.1007/s10519-011-9512-z

Continuum Analytics. (2015, November). Anaconda Software Distribution.
Retrieved from https://continuum.io/ (Computer software)

Crabbe, J. C., Wahlsten, D., & Dudek, B. C. (1999). Genetics of mouse
behavior: interactions with laboratory environment. Science, 284 , 1670–
1672. doi: 10.1126/science.284.5420.1670

Daan, S., Spoelstra, K., Albrecht, U., Schmutz, I., Daan, M., Daan, B., . . .
Omo, G. D. (2011). Lab mice in the field: unorthodox daily activity and
effects of a dysfunctional circadian clock allele. Journal of Biological
Rhythms, 26 (2), 118–129. doi: 10.1177/0748730410397645

de Chaumont, F., Coura, R. D.-S., Serreau, P., Cressant, A., Chabout, J.,
Granon, S., & Olivo-Marin, J.-C. (2012, April). Computerized video
analysis of social interactions in mice. Nature methods, 9 (4), 410–417.
doi: 10.1038/nmeth.1924

Dell’omo, G., Shore, R. F., & Lipp, H.-P. (1998, January). An automated sys-
tem, based on microchips, for monitoring individual activity in wild small
mammals. The Journal of experimental zoology , 280 (1), 97–99. doi: 10
.1002/(SICI)1097-010X(19980101)280:1<97::AID-JEZ12>3.0.CO;2-T

Dzik, J. M., & Łęski, S. (2017a). PyMICE documentation. Retrieved 18th-
May-2017, from https://neuroinflab.github.io/PyMICE/

Dzik, J. M., & Łęski, S. (2017b). PyMICE – Laboratory of Neuroinformat-
ics. Retrieved 18th-May-2017, from https://neuroinflab.wordpress
.com/research/pymice/

Dzik, J. M., Łęski, S., & Puścian, A. (2017, April). PyMICE: 1.1.1 release.
(Computer software; RRID:nlx_158570) doi: 10.5281/zenodo.557087

Endo, T., Maekawa, F., Võikar, V., Haijima, A., Uemura, Y., Zhang, Y., . . .
Kakeyama, M. (2011, August). Automated test of behavioral flexibility
in mice using a behavioral sequencing task in IntelliCage. Behavioural
Brain Research, 221 (1), 172–181. doi: 10.1016/j.bbr.2011.02.037

Floyd, R. W. (1967). Mathematical Aspects of Computer Science. In
J. T. Schwartz (Ed.), (pp. 19–32). Providence, RI: American Mathe-
matical Society.

Free Software Foundation. (2007, June 29). GNU General Public Li-
cense version 3. Retrieved 15th-Sep-2016, from https://www.gnu.org/
licenses/gpl.html

Galsworthy, M. J., Amrein, I., Kuptsov, P. A., Poletaeva, I. I., Zinn, P., Rau,
A., . . . Lipp, H. P. (2005, February). A comparison of wild-caught wood
mice and bank voles in the Intellicage: assessing exploration, daily activ-
ity patterns and place learning paradigms. Behavioural Brain Research,
157 (2), 211–217. doi: 10.1016/j.bbr.2004.06.021

GitHub Inc. (n.d.). GitHub. Online. Retrieved 15th-Jan-2016, from https://
github.com

Gousios, G., Vasilescu, B., Serebrenik, A., & Zaidman, A. (2014). Lean GHTor-
rent: GitHub Data on Demand. In Proceedings of the 11th working
conference on mining software repositories (pp. 384–387). New York,

https://continuum.io/
https://neuroinflab.github.io/PyMICE/
https://neuroinflab.wordpress.com/research/pymice/
https://neuroinflab.wordpress.com/research/pymice/
https://www.gnu.org/licenses/gpl.html
https://www.gnu.org/licenses/gpl.html
https://github.com
https://github.com

PyMICE – a Python library for analysis of IntelliCage data 19

NY, USA: ACM. Retrieved from http://www.win.tue.nl/~aserebre/
msr14georgios.pdf doi: 10.1145/2597073.2597126

Halsey, L. G., Curran-Everett, D., Vowler, S. L., & Drummond, G. B. (2015,
February). The fickle P value generates irreproducible results. Nature
Methods, 12 (3), 179–185. doi: 10.1038/nmeth.3288

Heinrichs, S. C., & Koob, G. F. (2006, February). Current protocols in neu-
roscience. In C. G. Gerfen et al. (Eds.), (Vol. Chapter 8, pp. 8.4.1–
8.4.17). John Wiley & Sons, Inc. Retrieved from http://onlinelibrary
.wiley.com/doi/10.1002/0471142301.ns0804s34/full doi: 10.1002/
0471142301.ns0804s34

Hoare, C. A. R. (1969). An axiomatic basis for computer programming.
COMMUNICATIONS OF THE ACM , 12 (10), 576–580. doi: 10.1145/
363235.363259

Hunter, J. D. (2007). Matplotlib: A 2D Graphics Environment. Computing
in Science & Engineering , 9 (3), 90–95. doi: 10.1109/MCSE.2007.55

Ince, D. C., Hatton, L., & Graham-Cumming, J. (2012, February). The
case for open computer programs. Nature, 482 (7386), 485–488. doi:
10.1038/nature10836

Jones, R. (2002, November 8). PEP 0301 – Package Index and Metadata for
Distutils. Online. Retrieved 15th-Jan-2016, from https://www.python
.org/dev/peps/pep-0301/

Kiryk, A., Mochol, G., Filipkowski, R. K., Wawrzyniak, M., Lioudyno, V.,
Knapska, E., . . . Kaczmarek, L. (2011, October). Cognitive Abilities of
Alzheimer’s Disease Transgenic Mice are Modulated by Social Context
and Circadian Rhythm. Current Alzheimer Research, 8 (8), 883–892. doi:
10.2174/156720511798192745

Knapska, E., Lioudyno, V., Kiryk, A., Mikosz, M., Gorkiewicz, T., Michaluk,
P., . . . Kaczmarek, L. (2013, September). Reward Learning Requires
Activity of Matrix Metalloproteinase-9 in the Central Amygdala. Journal
of Neuroscience, 33 (36), 14591–14600. doi: 10.1523/JNEUROSCI.5239
-12.2013

Knapska, E., Walasek, G., Nikolaev, E., Neuhäusser-Wespy, F., Lipp, H. P.,
Kaczmarek, L., & Werka, T. (2006, March). Differential involvement of
the central amygdala in appetitive versus aversive learning. Learning &
Memory , 13 (2), 192–200. doi: 10.1101/lm.54706

Knuth, D. E. (1984). Literate Programming. The Computer Journal , 27 (2),
97–111. Retrieved 8th-Oct-2015, from http://comjnl.oxfordjournals
.org/content/27/2/97 doi: 10.1093/comjnl/27.2.97

Krackow, S., Vannoni, E., Codita, A., Mohammed, A. H., Cirulli, F., Branchi,
I., . . . Lipp, H.-P. (2010, October). Consistent behavioral phenotype
differences between inbred mouse strains in the IntelliCage. Genes, brain,
and behavior , 9 (7), 722–731. doi: 10.1111/j.1601-183X.2010.00606.x

Lamport, L. (1986). LaTeX: A document preparation system: User’s Guide
and Reference Manual. Reading, MA: Addison-Wesley.

McCarthy, J. (1963). A Basis for a Mathematical Theory of Computation. In
P. Braffort & D. Hirshberg (Eds.), Computer programming and formal

http://www.win.tue.nl/~aserebre/msr14georgios.pdf
http://www.win.tue.nl/~aserebre/msr14georgios.pdf
http://onlinelibrary.wiley.com/doi/10.1002/0471142301.ns0804s34/full
http://onlinelibrary.wiley.com/doi/10.1002/0471142301.ns0804s34/full
https://www.python.org/dev/peps/pep-0301/
https://www.python.org/dev/peps/pep-0301/
http://comjnl.oxfordjournals.org/content/27/2/97
http://comjnl.oxfordjournals.org/content/27/2/97

20 Jakub M. Dzik et al.

systems (pp. 33–70). Amsterdam: North-Holland.
McKinney, W. (2010). Data Structures for Statistical Computing in Python.

In S. van der Walt & J. Millman (Eds.), Proceedings of the 9th python
in science conference (pp. 51–56).

Mijakowska, Z., Łukasiewicz, K., Ziółkowska, M., Lipiński, M., Trąbczyńska,
A., Matuszek, Ż., . . . Radwańska, K. (2015, November 16). Autophos-
phorylation of alpha isoform of calcium/calmodulin-dependent kinase II
regulates alcohol addiction-related behaviors. Addiction biology , 22 . doi:
10.1111/adb.12327

Morrison, S. J. (2014, December 10). Time to do something about repro-
ducibility. eLife, 3 , e03981. doi: 10.7554/eLife.03981

NewBehavior AG. (2011). IntelliCage Plus Manual. PDF document.
Technoparkstrasse 1; CH-8005 Zürich; Switzerland.

Niemeyer, G., Pieviläinen, T., & de Leeuw, Y. (n.d.). dateutil – powerful
extensions to datetime. Online. Retrieved 15th-Jan-2016, from https://
dateutil.readthedocs.org/

Oliphant, T. (2007). Python for scientific computing. Computing in Science
& Engineering , 9 (3), 10–20. doi: 10.1109/MCSE.2007.58

Ozyurt, I. B., Grethe, J. S., Martone, M. E., & Bandrowski, A. E. (2016, 01).
Resource Disambiguator for the Web: Extracting Biomedical Resources
and Their Citations from the Scientific Literature. PLoS ONE , 11 (1),
e0146300. Retrieved from http://dx.doi.org/10.1371%2Fjournal
.pone.0146300 doi: 10.1371/journal.pone.0146300

Pastell, M. (n.d.). Pweave – reports from data with Python. Online. Retrieved
8th-Oct-2015, from http://mpastell.com/pweave

Pastell, M., O’Leary, A., & Abukaj. (2016). Pweave v.0.25. Zenodo. (Computer
software) doi: 10.5281/zenodo.50174

Peng, R. D. (2011, December). Reproducible Research in Computational
Science. Science, 334 (6060), 1226–1227. Retrieved from http://www
.sciencemag.org/content/334/6060/1226.full doi: 10.1126/science
.1213847

Perez, F., & Granger, B. E. (2007). IPython: A System for Interactive Scientific
Computing. Computing in Science & Engineering , 9 (3), 21–29. doi:
10.1109/MCSE.2007.53

Pérez-Escudero, A., Vicente-Page, J., Hinz, R. C., Arganda, S., & de Polavieja,
G. G. (2014, July). idTracker: tracking individuals in a group by auto-
matic identification of unmarked animals. Nature methods, 11 (7), 743–
748. doi: 10.1038/nmeth.2994

Peters, T. (2004, August 22). PEP 20 – The Zen of Python. Online. Retrieved
8th-Oct-2015, from https://www.python.org/dev/peps/pep-0020/

Project Jupyter. (n.d.). Project Jupyter. Online. Retrieved 12th-Jan-2016,
from https://jupyter.org

Puścian, A., Łęski, S., Górkiewicz, T., Meyza, K., Lipp, H. P., & Knapska,
E. A. (2014, April). A novel automated behavioral test battery assessing
cognitive rigidity in two genetic mouse models of autism. Frontiers in
Behavioral Neuroscience, 8 . doi: 10.3389/fnbeh.2014.00140

https://dateutil.readthedocs.org/
https://dateutil.readthedocs.org/
http://dx.doi.org/10.1371%2Fjournal.pone.0146300
http://dx.doi.org/10.1371%2Fjournal.pone.0146300
http://mpastell.com/pweave
http://www.sciencemag.org/content/334/6060/1226.full
http://www.sciencemag.org/content/334/6060/1226.full
https://www.python.org/dev/peps/pep-0020/
https://jupyter.org

PyMICE – a Python library for analysis of IntelliCage data 21

Puścian, A., Łęski, S., Kasprowicz, G., Winiarski, M., Borowska, J., Nikolaev,
T., . . . Knapska, E. (2016, October 12). Eco-HAB as a fully automated
and ecologically relevant assessment of social impairments in mouse mod-
els of autism. eLife, 5 , e19532. Retrieved from http://dx.doi.org/
10.7554/eLife.19532 doi: 10.7554/eLife.19532

Python Packaging Authority. (n.d.). pip – pip 7.1.2 documentation. Online.
Retrieved 15th-Jan-2016, from https://pip.pypa.io/

Python Packaging Authority. (2017). Easy install. Online. Re-
trieved 19th-May-2017, from https://setuptools.readthedocs.io/
en/latest/easy_install.html

Python Software Foundation. (n.d.). PyPI - the Python Package Index. Online.
Retrieved 15th-Jan-2016, from https://pypi.python.org/pypi

Radwańska, K., & Kaczmarek, L. (2012, May). Characterization of an alcohol
addiction-prone phenotype in mice. Addiction biology , 17 (3), 601–612.
doi: 10.1111/j.1369-1600.2011.00394.x

Shemesh, Y., Sztainberg, Y., Forkosh, O., Shlapobersky, T., Chen, A., &
Schneidman, E. (2013, January). High-order social interactions in groups
of mice. eLife, 2 (0), e00759. doi: 10.7554/eLife.00759

Smutek, M., Turbasa, M., Sikora, M., Piechota, M., Zajdel, J., Przewlocki,
R., & Parkitna, J. R. (2014). A model of alcohol drinking under an
intermittent access schedule using group-housed mice. PLOS ONE , 9 (5),
e96787. doi: 10.1371/journal.pone.0096787

Sorge, R. E., Martin, L. J., Isbester, K. A., Sotocinal, S. G., Rosen, S., Tuttle,
A. H., . . . Mogil, J. S. (2014, June). Olfactory exposure to males,
including men, causes stress and related analgesia in rodents. Nature
methods, 11 (6), 629–632. doi: 10.1038/nmeth.2935

TSE Systems International Group. (2016, Feb). IntelliCage Reference List.
Online. Retrieved 19th-May-2017, from http://www.tse-systems.com/
download/TSE_IntelliCage_Publications.pdf

Turing, A. (1937). On computable numbers, with an application to the
Entscheidungsproblem. In Proceedings of the london mathematical soci-
ety (Vol. 42, pp. 230–265). doi: 10.1112/plms/s2-42.1.230

van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy Array:
A Structure for Efficient Numerical Computation. Computing in Science
& Engineering , 13 (2), 22–30. doi: 10.1109/MCSE.2011.37

Vannoni, E., Võikar, V., Colacicco, G., Sánchez, M. A., Lipp, H. P., & Wolfer,
D. P. (2014, August). Spontaneous behavior in the social homecage
discriminates strains, lesions and mutations in mice. Journal of Neuro-
science Methods, 234 , 26–37. doi: 10.1016/j.jneumeth.2014.04.026

van Rossum, G. (1995). Python tutorial (Amsterdam No. CS-R9526). Month:
Centrum voor Wiskunde en Informatica (CWI).

Weissbrod, A., Shapiro, A., Vasserman, G., Edry, L., Dayan, M., Yitzhaky,
A., . . . Kimchi, T. (2013). Automated long-term tracking and social
behavioural phenotyping of animal colonies within a semi-natural envi-
ronment. Nature communications, 4 , 2018. doi: 10.1038/ncomms3018

Wilson, G., Aruliah, D. A., Brown, C. T., Chue Hong, N. P., Davis, M., Guy,

http://dx.doi.org/10.7554/eLife.19532
http://dx.doi.org/10.7554/eLife.19532
https://pip.pypa.io/
https://setuptools.readthedocs.io/en/latest/easy_install.html
https://setuptools.readthedocs.io/en/latest/easy_install.html
https://pypi.python.org/pypi
http://www.tse-systems.com/download/TSE_IntelliCage_Publications.pdf
http://www.tse-systems.com/download/TSE_IntelliCage_Publications.pdf

22 Jakub M. Dzik et al.

R. T., . . . Wilson, P. (2014, 01). Best Practices for Scientific Computing.
PLoS Biol , 12 (1), e1001745. Retrieved from http://dx.doi.org/10
.1371%2Fjournal.pbio.1001745 doi: 10.1371/journal.pbio.1001745

http://dx.doi.org/10.1371%2Fjournal.pbio.1001745
http://dx.doi.org/10.1371%2Fjournal.pbio.1001745

	References

