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Abstract Local field potentials have good temporal reso-
lution but are blurred due to the slow spatial decay of the
electric field. For simultaneous recordings on regular grids
one can reconstruct efficiently the current sources (CSD)
using the inverse Current Source Density method (iCSD).
It is possible to decompose the resultant spatiotemporal in-
formation about the current dynamics into functional com-
ponents using Independent Component Analysis (ICA). We
show on test data modeling recordings of evoked potentials
on a grid of 4× 5× 7 points that meaningful results are
obtained with spatial ICA decomposition of reconstructed
CSD. The components obtained through decomposition of
CSD are better defined and allow easier physiological in-
terpretation than the results of similar analysis of corre-
sponding evoked potentials in the thalamus. We show that
spatiotemporal ICA decompositions can perform better for
certain types of sources but it does not seem to be the case
for the experimental data studied.

Having found the appropriate approach to decompos-
ing neural dynamics into functional components we use
the technique to study the somatosensory evoked potentials
recorded on a grid spanning a large part of the forebrain.
We discuss two example components associated with the
first waves of activation of the somatosensory thalamus.
We show that the proposed method brings up new, more
detailed information on the time and spatial location of
specific activity conveyed through various parts of the so-
matosensory thalamus in the rat.
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S. Łęski · E. Kublik · D. A. Świejkowski · A. Wróbel · D. K. Wójcik
Department of Neurophysiology
Nencki Institute of Experimental Biology
3 Pasteur St.
02-093 Warsaw, Poland
E-mail: d.wojcik@nencki.gov.pl

Keywords local field potentials (LFP) · inverse Current
Source Density (iCSD) · Independent Component Analysis
(ICA) · somatosensory evoked potentials (EP) · thalamic
processing

1 Introduction

One of the obstacles in understanding how the brain works
is that all of its parts work simultaneously. The paradigm
of evoked activity (averaging responses with respect to the
chosen marker) is helpful in extracting dynamics relevant
for a given stimulus. To locate the anatomical structures
processing a representation of the stimulus and to pinpoint
the order of their activation one must be able to simul-
taneously probe many regions of the brain. A number of
techniques assist the researcher in this enterprise, including
PET, MRI, voltage or calcium sensitive dyes. However, all
of them have limitations, either in terms of available time-
scales, interpretation of obtained results, or the extent of
the tissue that can be accessed simultaneously.

A convenient choice when it comes to temporal reso-
lution is the local field potential (LFP): low-frequency part
of the extracellular electric potential, which reflects brain
dynamics at the level of neural populations (Nunez and
Srinivasan 2005). The extracellular potential is generated
by currents (mostly resulting from synaptic inputs) cross-
ing the cell membranes. The coarse-grained distribution of
trans-membrane currents leaving or entering cells is called
the current source density (CSD).

In the simplest model, which assumes quasi-static ap-
proximation of electrodynamic equations (Nunez and Srini-
vasan 2005), the density of currents C is related to the ex-
tracellular voltage φ by the Poisson equation:

∇(σ∇φ) =−C, (1)

where σ is the electrical conductivity tensor. Mathemati-
cally, this is the same equation as the one which describes
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the electric field of static charge distribution. The funda-
mental solution of this equation has the form of φ ∼ 1

r .
One consequence of the slow decay is that even for local-
ized CSD distributions, for dipole or closed fields, which
decay much faster, the resulting potential φ is non-local. In
other words, the electric signal recorded in one place may
reflect activity of a distant neural population1. This spatial
blurring is the first challenge in analysis of LFP. If several
time-aligned recordings of LFP on a line, 2D or 3D grid,
are available, one can try to address this problem by esti-
mating the underlying CSD from the measured voltages.
This is called the CSD method (Nicholson and Freeman
1975; Freeman and Nicholson 1975; Mitzdorf 1985).

Another challenge follows from simultaneous activity
of different populations which may contribute to each of
the recorded signals. This is the ‘cocktail party’ problem:
how to hear what a single population is saying if many pop-
ulations are speaking at the same time. Independent com-
ponent analysis (ICA) (Comon 1994; Bell and Sejnowski
1995) is a technique that proved to be of use for this kind
of blind source separation problem in many fields. In neu-
roscience it was used, among others, in the analysis of
fMRI data (McKeown et al. 1998; Stone et al. 2002), op-
tical imaging recordings (Schiessl et al. 2000; Reidl et al.
2007), in characterization of receptive fields (Saleem et al.
2008), and in analysis of local field potentials (Tanskanen
et al. 2005). Our application of ICA to volume CSD is sim-
ilar in spirit to fMRI and optical imaging analysis as in all
of these cases the tissue is probed regularly on fine spatial
scales and one can assume the studied signals to be gener-
ated by sources of well-defined spatial location.

Neither of these techniques (CSD, ICA) alone seems
to be sufficient for analysis of LFP recorded in a geomet-
rically and morphologically complex brain region, such as
the rat thalamus. For example, even if we knew exactly
the time-course of CSD, it could still happen that sources
and sinks occupying the same spatial localization represent
activity of different populations of cells, performing differ-
ent functions. On the other hand, independent components
calculated from LFP would ideally represent single func-
tional populations, but the localization of that populations
would be not so precise. While this may seem technical,
better localization of CSD versus LFP translates into sub-
stantially better resolution of the method, as we discuss
further. In this paper we show that the combination of CSD
and ICA provides a powerful and stable method for extrac-
tion of well-localized functional components from multi-
electrode recordings of LFP. We discuss several variants
of performing the decomposition and point out the optimal
approach for our data. Finally, we study selected compo-
nents obtained in analysis of data from three dimensional

1 See (Hunt, Falinska, Łęski, Wójcik, Kasicki (2009) unpub-
lished. Uvailable at http://www.neuroinf.pl/Members/danek/
homepage/preprints/Article.2009-10-22.4312

(4×5×7 locations) mapping of the local field potentials in
the rat forebrain during early stages of tactile information
processing.

The paper is organized as follows. In Section 2 we dis-
cuss the computational methods. Specifically, in Subsec-
tion 2.1 we describe the inverse CSD method, in 2.2 we
present the spatiotemporal ICA method we use, and in 2.3
we describe how we use clustering to study stability of
ICA decomposition. We test different combinations of spa-
tial and temporal decompositions on volumetric test data
in Section 3 and show that depending on the structure of
sources different variants of ICA give best reconstructions.
In Section 4 we provide details about the experimental pro-
cedure. The insights obtained in the decomposition of test
data are used in the analysis of experimental data presented
in Section 5 and discussed in Section 6.

2 Computational methods

2.1 Inverse Current Source Density

The simplest technique of CSD estimation which was used
traditionally was through the finite-difference approxima-
tion to Eq. (1), often smoothed for stability (Freeman and
Nicholson 1975). It is based on the replacement of the sec-
ond derivative with appropriate difference quotient. Let us
focus on a one-dimensional example and assume that CSD
varies only along z axis and is constant in perpendicular
plane. Equation (1) becomes then

σ
∂ 2φ

∂ z2 =−C(z) . (2)

Here we also assume that the medium is isotropic and ho-
mogeneous so that σ is a constant scalar. Let us consider
signals from a laminar electrode with multiple equidistant
contacts positioned at zk = z0 + kh, where h is the inter-
contact distance. The CSD is then approximated using the
three-point formula for second derivative:

C(zk) =−σ
φ(zk +h)−2φ(zk)+φ(zk−h)

h2 . (3)

This method has been applied extensively over the years to
electrophysiological signals from various parts of the brain
(Schroeder et al. 1992; Ylinen et al. 1995; Shimono et al.
2000; Lakatos et al. 2005; Lipton et al. 2006; de Solages
et al. 2008; Rajkai et al. 2008; Stoelzel et al. 2009). One
can also use other numerical approximations of ∂ 2φ

∂ z2 , for
example using not only immediate neighbors but also next
neighbors or use different weights which may lead to better
stability of the estimates at the cost of spatial filtering of the
results (see for example Freeman and Nicholson (1975);
Tenke et al. (1993)).

An advantage of the traditional CSD method is its sim-
plicity. Moreover, in simple one dimensional geometry for
recordings in laminar structures it often gives meaningful
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results. However, this straightforward approach has a num-
ber of drawbacks. For instance, as shown in Pettersen et al.
(2006), traditional CSD method may introduce errors in
estimating the CSD when the sources vary considerably in
the plane perpendicular to the electrode at the scale of a
few intercontact distances. This is the case for the record-
ings from the somatosensory (barrel) cortex, for example.
Also, in traditional CSD it is hard to account for conductiv-
ity jumps, e.g. at cortical surface. Another drawback is that
the three-point formula, Eq. (3), can not be applied at the
boundary. This means that we lose boundary data. In one
dimension we lose two points out of, say, twenty, but for
two- or three-dimensional data the boundary may comprise
most of the recording points. For example, in two dimen-
sional recordings on an 8 by 8 grid there are 24 boundary
points out of all 64, and in the three-dimensional (4×5×7)
data we study here there are 110 points at the boundary out
of 140 (more than 75%). Despite these facts even two di-
mensional CSD estimates through discrete derivation were
studied for example in Novak and Wheeler (1989), Shi-
mono et al. (2000) and Lin et al. (2002). For one dimen-
sional cortical recordings, to overcome the problem of the
boundaries, Vaknin et al. (1988) proposed to add virtual
recording points at both ends of the line of contacts and to
assume that φ at these points is the same as at the nearest
end. This procedure allows us to estimate the CSD at the
ends, but the assumption that voltage does not vary outside
the recording electrode is not always right.

Recently another approach to CSD estimation called
inverse Current Source Density method was proposed by
Pettersen et al. (2006) for one dimensional recordings and
generalized to three-dimensional recordings by Łęski et al.
(2007). Here, unlike the traditional CSD, one does not try
to estimate C directly from Eq. (1). Instead, one constructs
a class of CSD distributions parameterized with as many
parameters as the number of recorded signals. Then one
has to establish a one-to-one relation F between measured
voltages φ and the parameters of the CSD distribution. For
a specific example assume N recording points on one-,
two- or three-dimensional Cartesian grid. Consider a fam-
ily of CSD distributions parameterized by N numbers,
Ic1,...,cN (x,y,z, t). By this we mean that knowing the values
of the N parameters we can assign a value of CSD to each
spatial position. Then the values of the potential, φ , on the
grid can be obtained by solving Eq. (1), which yields the
relation F . A direct solution to the Poisson equation leads
to the formula

φc1,...,cN (x,y,z, t) =
∫ Ic1,...,cN (x′,y′,z′, t)dx′ dy′ dz′

4πσ
√

(x− x′)2 +(y− y′)2 +(z− z′)2
.

Therefore, the N measured voltages

φn(t) = φc1,...,cN (xn,yn,zn, t)

are functions of the N CSD parameters

(φ1(t), . . . ,φN(t))T = F(c1, . . . ,cN)(t) (4)

If the family and the parameterization are chosen appro-
priately, one can invert F and from the N measured poten-
tials get the N parameters of CSD. One particularly useful
parameterization which we are using here, is to use CSD
values on the measurement grid as the N parameters cn and
obtain the CSD within the grid Ic1,...,cN (x0,y0,z0, t) via in-
terpolation (for example nearest neighbor, linear or with
splines). Then one can reduce equation (4) to an invert-
ible linear relation between the recorded potentials and the
CSD values at the grid. One can also consider other CSD
distributions and parameterizations. For example, Pettersen
et al. (2006) showed that the traditional one-dimensional
CSD is equivalent to inverse CSD if we assume that the
CSD is localized on infinitely thin, infinite planes located
at z = zi.

Assuming that all the sources are located within the
electrodes grid may lead to noticeable reconstruction errors
close to the boundary when there are active sources located
outside the probed region (Łęski et al. 2007). This is be-
cause the inverse CSD method tries to imitate the influence
of these sources by adjusting the distribution within the
grid. A way to overcome this difficulty is to consider a fam-
ily of CSD distributions extending one layer beyond the
original grid. One can set the CSD values at the additional
nodes to zero or duplicate the value from the nearest node
of the original grid. We denote these two approaches by B
and D boundary conditions, in line with notation of (Łęski
et al. 2007). Note that new CSD family on the extended
grid is still parameterized with N parameters. In this paper
we use spline interpolation between the nodes and the D
boundary conditions.

2.2 Independent Component Analysis

We follow the spatiotemporal ICA scheme as described in
detail by Stone and Porrill (1999) and Stone et al. (2002).
The data we aim to analyze are m = 4×5×7 = 140 signals
f1(t), . . . , fm(t), with 1≤ t ≤ n. We can arrange the data in
an m× n matrix, X = ( f1, . . . , fm)T , so that the rows of X
are our signals. Equivalently we can view our data as a
sequence of n snapshots X = (s1, . . . ,sn).

First we use principal component analysis to reduce di-
mensionality of the problem. That is, we approximate our
data matrix X with X̃ = UV T , where U is an m× k ma-
trix of k spatial components (‘coefficients’ in PCA), and
V is an n× k matrix of temporal components (principal
component ‘scores’). The choice of k is an important is-
sue. Especially taking k too small is to be avoided, as that
may result in losing information contained in the signal.
Also, for k not large enough one may end up with com-
ponents which could be further separated for larger k. On
the other hand, taking k too large may result in unneces-
sarily large data sets, but is less dangerous than the oppo-
site. To choose k for the experimental data we performed
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the analysis for 3≤ k ≤ 32. Using clustering (Section 2.3)
we found that the number of components we could extract
saturates around k = 20 (see Figure 1 and 2 in the sup-
plementary material). Finally, we took k = 24 for analysis
of experimental data. For model data (Section 3) we also
took k = 24, despite the fact that the true dimensionality
of the data was lower (between 5 and 8). In such cases we
get several large components corresponding to the origi-
nal ones, and several components which are close to zero.
This backs the claim that choosing too large k is safer than
choosing k too small.

The idea behind spatiotemporal ICA is to take into ac-
count information about independence carried by the tem-
poral signals and the spatial distributions and decompose
X̃ = ST T into maximally independent spatial and tempo-
ral components S and T . This decomposition is found by
maximization of a linear combination of entropies obtained
separately for spatial, HS, and temporal, HT , probability
distribution functions:

hST = αHS +(1−α)HT . (5)

Parameter α ∈ [0,1] quantifies how much weight we at-
tribute to the temporal and spatial independence. α = 0
is purely temporal decomposition, when one assumes in-
dependent temporal sources with dual spatial distributions
unconstrained. α = 1 is purely spatial decomposition, when
one assumes independent sources localized in space and
dual unconstrained temporal signals. Intermediate α take
into account possible independence of both parts. In the
article we use α = 0.5 or α = 0.8 although we tested a
wider range of values.

Both the temporal and spatial ICA decompose the orig-
inal signals into pairs of temporal signals and associated
spatial profiles. The difference is in the assumptions un-
derlying the decomposition. The temporal ICA tries to find
signals which are independent over time, while the spatial
ICA looks for signals which are independent over space.
Physiologically, this means that the temporal ICA assumes
independent processes in the brain taking place simultane-
ously, while spatial ICA assumes that there exist indepen-
dent modules, or spatially organized nuclei, which perform
distinct functions and are generators of independent sig-
nals. One should expect that the most reasonable assump-
tions will depend on the experimental situation. For exam-
ple, for analysis of ongoing EEG signal the temporal ICA
may work better, as the resulting signals are produced by
many independent generators performing different func-
tions simultaneously. On the other hand, the spatial ICA
may be better suited for the analysis of averaged stimulus-
evoked potentials, as in such case the signals are related to
a single brain computation, which is performed by a net-
work with fixed anatomical connections.

The details of the algorithm are presented in (Stone
and Porrill 1999; Stone et al. 2002). We used the MAT-

LAB code2 by J.V. Stone and J. Porrill. We required that the
spatial independent components have high kurtosis (model
probability density function x 7→ 1− tanh2 x), and that the
temporal components have low kurtosis (model pdf x 7→
e−x4

). This requirement is satisfied for example by local-
ized spatial components and oscillatory time courses. Any
other combination of kurtosis assumptions led to physio-
logically meaningless components.

2.3 Clustering of independent components

All variants of ICA methods rely on minimization of a cer-
tain goal function. In our case this goal function, Eq. (5),
is negative of entropy of estimated components (Bell and
Sejnowski 1995; Stone et al. 2002). One problem that may
arise here is that the minimization algorithm typically finds
only a local minimum of the goal function. A priori there
is no guarantee that this local minimum corresponds to a
valid solution of blind source separation problem, although
it may be the case. To make sure that we obtain correct
solutions is to repeat the ICA algorithm several times, us-
ing for example different starting points for minimization,
and to see if the components are stably extracted (Himberg
et al. 2004).

For each rat we repeated the ICA procedure 30 times
with random initial mixing matrix. Every time we looked
for 24 components, which produced the total of 720 com-
ponents. We clustered these components using hierarchi-
cal agglomerative clustering (group average linkage), as in
(Himberg et al. 2004). We used the hcluster.m MATLAB

script available as a part of Icasso software package3. As
the dissimilarity matrix we used a matrix of (squared) L2

distances between components. Specifically, for two com-
ponents fi(t), f j(t), associated with spatial profiles (values
at 140 measurement points) si(x,y,z), s j(x,y,z), we took
D(i, j) as dissimilarity, where

D(i, j) =
DT (i, j)
〈DT (i, j)〉i, j

+
DS(i, j)
〈DS(i, j)〉i, j

,

DT (i, j) = min
(

∑
t

( fi(t)− f j(t))
2 ,∑

t
( fi(t)+ f j(t))

2
)

,

DS(i, j) = min

(
∑
x,y,z

(si(x,y,z)− s j(x,y,z))
2 ,

∑
x,y,z

(si(x,y,z)+ s j(x,y,z))
2

)
.

We take the minimum over measures using fi(t)− f j(t)
and fi(t)+ f j(t), analogously for s(x,y,z), to avoid spuri-
ous dissimilarities which would occur when signs are dif-

2 STICA software available at
http://jim-stone.staff.shef.ac.uk/

3 The package is available at
http://www.cis.hut.fi/jhimberg/icasso/
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ferently distributed between fi(t) and si(t) for two runs of
ICA.

We also used clustering to choose the number of ex-
tracted components k. We pooled all 525 components ob-
tained for 3 ≤ k ≤ 32 (one run for each k) and applied
the clustering procedure described above. We divided the
data into 32 clusters and counted how many clusters are
populated by components obtained for selected k in the
studied range. For our experimental data this number satu-
rates slightly above k = 20, see the supplementary material
available online.

3 Analysis of test data

To test the proposed ICA / iCSD method we used model
data of the same form as the experimental data studied
in the next section. Thus we generated 140 LFP signals
from a number (between M = 5 to M = 8) of spatially lo-
calized sources with time-courses gi(t) and spatial profiles
ci(x,y,z). Specifically, we assumed the current-source den-
sity of the form

C(x,y,z, t) =
M

∑
i=1

ci(x,y,z)gi(t). (6)

We used three types of the time courses gi(t): 1) oscilla-
tory signals (Gaussian white noise low-pass filtered below
300Hz), 2) simulated “evoked potentials” — these signals
consisted of two step functions of opposite sign filtered be-
low 300Hz, 3) experimental evoked potentials chosen from
the recordings described in Section 4. As the spatial com-
ponents we took CSD distributions for which the inverse
CSD method gives exact results. The reason for choosing
such sources was to focus on comparing different variants
of ICA. The reconstruction error of the iCSD method it-
self has already been studied in Łęski et al. (2007); Wój-
cik and Łęski (2009). The sources were constructed as fol-
lows: on a grid of 4× 5× 7 nodes we set non-zero CSD
values at a small number of nodes. These values were then
interpolated using splines in the same way as used for con-
struction of F (see Section 2.1). Again, we used several
kinds of spatial components: a) two non-zero nodes, for
which we took the same absolute value of CSD and oppo-
site signs (a dipole); b) as in a), but with the same signs;
c) two non-zero nodes with the CSD values of opposite
signs and non-equal amplitude; d) a non-zero value Vcentral
at one node surrounded by non-zero values in 6 neighbor-
ing nodes (the number of neighboring nodes was smaller
if the central node was located at the boundary), the val-
ues at the neighboring nodes were equal to −Vcentral/6; e)
single non-zero CSD node. Due to spline interpolation ev-
ery distribution was non-zero in some region surrounding
initially set CSD nodes. These choices of spatial and tem-
poral profiles were motivated by the structures observed
in the analysis of experimental data. All components from

two of the model datasets are presented in supplementary
material available online.

For these different sets of sources and generated poten-
tials we performed the inverse CSD analysis, followed by
spatial, temporal, and spatiotemporal ICA decomposition
(Section 2.2) with different values of α . This framework
allowed us to compare the components obtained for dif-
ferent choices of α with the generating sources known ex-
actly. It was shown in Stone and Porrill (1999) on test data
modeling synthetic fMRI images that the best decomposi-
tion of signal was obtained when both spatial and temporal
independence of the data were taken into account (for spa-
tiotemporal ICA with α = 0.5). We expected the same to
be true in case of three-dimensional LFP data. However, in
case of our simulated signals we found that the values of α

which give good results for some combinations of tempo-
ral and spatial components do not necessarily lead to valid
reconstructions for different classes of components. One
general observation was that purely temporal decomposi-
tions usually led to meaningless components. Otherwise,
depending on test case, either spatial or spatiotemporal de-
compositions were performing better. For every test case at
least one approach allowed to recover the original sources
with high precision.

Here is the summary of our observations:

1. For spatial components of type a) the best choice is the
spatiotemporal ICA (for example α = 0.5 although the
results were robust against changes of α), which al-
lows for faithful extraction of the original components.
Spatial ICA (α = 1) extracted some components faith-
fully, but other components were not unmixed properly.
For example, two of the original components were ex-
tracted as three reconstructed components, with some
non-trivial cancellations occuring.

2. For type b) and c) both spatial (α = 1) and spatiotem-
poral (α = 0.5) ICA methods recover the original com-
ponents.

3. For d) spatial components the spatial ICA works better
than the spatiotemporal variant, which tends to produce
several components with overlapping spatial parts and
similar time-courses; however, the spatial ICA some-
times puts some part of the surrounding current sources
into a different component than the central source.

4. For e) spatial components (single non-zero CSD node)
and oscillating signals (type 1) the spatial ICA is again
a better choice.

To illustrate these effects Fig. 1 shows example compo-
nents obtained in spatiotemporal and spatial ICA decom-
positions for test sources of the form d), which corresponds
to the closed field we observe in the experimental data,
with part of the temporal signals given by the filtered step
potentials, 2), and another part being the experimental EPs,
3). The dataset was a linear combination of eight sources
of such form with different spatial placement. Fig. 1 A and
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Fig. 1 Tests of spatial (α = 1) and spatiotemporal (α = 0.5) ICA on model data described in Section 3, point 3. Each panel shows one (A–F)
or two (G, H) components in 3D. Five images in every panel are parallel, consecutive slices through the volume spanned by the 4×5×7 grid
and show the spatial distribution of the current source density. Below each planar representation of the spatial CSD distribution we plot the time
course of the components, fi(t), the vertical line marks the time for which the spatial distribution is drawn. A), B) two of the components present
in model data. Spatial ICA recovers these components faithfully (C, D). The spatiotemporal ICA generates two components E), F), overlapping
in space. The sum of these two components at t = 9ms, G), is similar to the original component A), while the same sum at t =−0.2ms yields
the component B). This means that in this case the spatiotemporal ICA produces mixtures of original components.
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B show two of the original model components. The spatial
ICA leads to well separated components, Fig. 1 C and D.
For spatiotemporal decomposition these two components
become mixed, Fig. 1 E and F. Fig. 1 G and H show their
sum at two different time points. This dataset, processed
using several variants of the procedure, is available online
together with a suitable MATLAB viewer4.

Clearly, the choice of model data may favor one method
over the other, therefore these results, to some extent, are
a consequence of the assumed structure of sources. Specif-
ically, while the spatial distributions of two components
could overlap, there was usually substantial difference be-
tween any pair. On the other hand, we considered sources
with substantially correlated time courses. Our intention
was to model similar activation of these spatially separated
sources following the dynamics observed in the experi-
ment (see Section 4, especially Fig. 5 and 6). It was also
inspired by the simultaneous divergent signal propagation
commonly taking place in the neural system.

One issue that should be addressed is why decompose
iCSD reconstructions instead of raw potentials. When we
perform the two procedures, ICA decomposition and iCSD
reconstruction, in principle they can be done in either or-
der. In practice, however, it turns out that ICA decomposi-
tion of potentials followed by reconstruction of the under-
lying CSD did not produce good results. This is caused by
the long range of electric potential which smears the cur-
rent sources in the LFP picture. Therefore, the same source
in the CSD picture will be much more localized than its po-
tential. This leads to higher kurtosis for the distribution of
CSD values. As the algorithm we used is unmixing sources
looking for high kurtosis in the spatial domain, it is a major
issue. Figure 2 shows components obtained through spatial
ICA on LFP followed by iCSD (Fig. 2 C) with components
obtained by ICA performed on iCSD reconstructed signals
(Fig. 2 B) corresponding to a specific original source in
the signal (Fig. 2 A). The kurtosis of the distribution of
the CSD values of the original source (Fig. 2 A) was 113,
which was almost twice the kurtosis of the distribution of
LFP values for the same source (60). Clearly, the ICA on
LFP leads to very poor decomposition. Curiously, the time
course of the source was correctly recovered by both ap-
proaches.

4 Animal experiments and data

We used the ICA / iCSD method described above to un-
derstand the dynamics of complex spatiotemporal activa-
tion pattern evoked in the rat’s thalamus by somatosensory
stimulation. The local field potential (LFP) responses to
vibrissal displacement were recorded from deep forebrain
structures of the anaesthetized (urethane; 1.5 g/kg b.w.)

4 http://www.neuroinf.pl/Members/
szleski/iCSD_data/ICviewer

Fig. 2 Comparison of spatial components obtained with ICA applied
to either LFP signals or reconstructed CSD. A) Original (model) spa-
tial component. B) Spatial component recovered using spatial ICA
on CSD. C) Spatial component recovered using spatial ICA on LFP
(decomposition followed by iCSD). D) Time-course of the original
component is faithfully recovered with both methods.

adult male Wistar rats (N = 7). Local anesthetic (EMLA
5% cream) was applied into external auditory meatus and
animals placed in a stereotaxic apparatus. Skin on the head
was injected with 0.5% lidocaine prior to incision. The
body temperature was kept at 37◦C by a thermostatic blan-
ket, liquid requirements were fulfilled by subcutaneous in-
jections of 0.9% NaCl (2 ml every 2 hrs). The depth of
anesthesia was monitored by observation of presence of
corneal reflexes and whisker twitching and adjusted with
supplementary doses of urethane (10% of the initial dose).
All experimental procedures followed the 86/609/EEC Di-
rective and were accepted by the 1st Warsaw Local Ethics
Committee.

To access the deep forebrain structures most of the right
parietal bone was removed and the resulting opening was
covered with agar dissolved in saline. A set of 2-5 stainless
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Fig. 3 Potentials recorded in Rat 1 in one of the coronal planes. A) Evoked potentials recorded at positions marked by full circles in the
coronal plane shown in B; B) Drawing of structures and electrode tracks in one of the investigated coronal planes. Ellipses on the top outline
the approximate surface positions of the insertions of the electrode grid (filled ellipses correspond to the drawn plane, crossed ellipse marks the
surface position where the stereotaxic manipulator was set to zero; the coordinates of the surface grid are 2.1, 2.8, 3.5 and 4.2 mm to the right
from midline, 1.9, 2.6, 3.3, 4.0 and 4.7 mm posterior to Bregma). Light gray lines mark electrodes traces and light gray circles indicate recording
positions at seven depths at the deep forebrain. The notation of the recording positions and respective EPs corresponds to X_Y_Z coordinates,
where X deciphers lateral position, Y anterior-posterior position and Z codes the recording depth. Accordingly, the coronal plane shown in B
corresponds to Y = 3 and the biggest potential can be traced at location 2_3_7. For the names of the structures see section Abbreviations at the
end of the article.

steel micro-electrodes (FHC, Bowdoin, USA; impedance
of 1-1.5 M at 1 kHz) was mounted in parallel on the manip-
ulator holder with 0.7 mm horizontal spacing between the
tips. Electrodes were lowered vertically through the open-
ing and stopped each 0.7 mm at seven depths in the brain
tissue, starting at 3.4 mm from the cortical surface (zero
being set at the most medial-anterior position; cross in Fig.
3B). At each stop the group of left whiskers (attached to
piezoelectric stimulator) was deflected by 100µm, 60 times
and then averaged to obtain the evoked potentials (EPs)
from a specific point. After completion of one penetration
the electrodes were moved to the other recording positions
on the 4 by 5 surface grid (Fig. 3B). Thus, a 3D Carte-
sian grid of 140 (4×5×7) recording points comprising a
slab of forebrain tissue with portions of the thalamus, pre-
tectum, hippocampus, and cerebral white matter was com-
pleted. The length of the interelectrode distance was based
on the average size of the studied thalamic nuclei (e.g. the
posterior nucleus, Po, 1.4× 1× 2 mm), and the expected

large-scale activation evoked by the strong multi-whisker
input.

The LFPs were recorded monopolarly (with Ag-AgCl
reference electrode under the skin on the neck), amplified
(1000 times) and filtered (0.1–5 kHz). Epochs (of about
1.4 s) containing EPs were digitized on-line (10 kHz) with
1401plus interface and Spike-2 software (CED, Cambridge,
England). All stored data were examined for integrity and
epochs with artifacts were excluded from further analy-
sis. To obtain clear LFP, not contaminated by multi-unitary
activity, the recorded signal was low-pass filtered below
300Hz (a linear-phase FIR digital filter of order 100 with
Kaiser window, β = 5).

After completion of the experiment the electrolytic le-
sions were made in corner positions of the recording grid;
rats received overdose of pentobarbital (150 mg/kg b.w.)
and were perfused transcardialy with saline followed by
10% formalin. Removed brains were stored in fixative, then
cryoprotected in sucrose solutions, sectioned on freezing
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microtome (50µm slices) and stained with Cresyl Violet.
We used the layering option of a graphic program (Gimp
2.6) to set photographs of brain slices against the atlas
planes (Paxinos and Watson 1996, 2007) and to draw out-
lines of structures, electrodes tracks and lesions (Fig. 3B).
The intermediate depth recording positions were estimated
at each 1/6th of inter-lesion distances along the electrodes
tracks. Final drawings for presenting results were adjusted
(spread, squeezed, skewed etc.) to fit the perfectly spaced
grid used for plotting CSD and ICA components.

To address specific recording positions we use X_Y_Z
coordinates where X is the number of lateral position start-
ing from midline; Y — the number of anterior-posterior
position (counting from the front) and Z — the number of
recording depth (starting from the top, see Fig. 3).

5 Results

The goal of this work was to find physiologically mean-
ingful components of the neural activity. We expected that
in the course of neural activation started with deflection of
vibrissae an increasing number of nuclei and cell popula-
tions would be activated according to the structure of the
network. As the populations are well-localized in space we
would expect that spatial ICA should perform well. We
assume that also the time courses of activation of most
structures are (statistically) independent to a large extent as
most of them have several inputs and outputs which may
play different roles at different times. However, some of
the common inputs could dominate resulting in temporal
correlation of activity in certain structures. It is hard to tell
a priori which choice of α would lead to best results in
the analysis of our experimental data. Guided by our tests
from Section 3 we expected that spatiotemporal or spatial
ICA decompositions would be optimal.

To avoid bias, however, we studied ICA spatiotemporal
decompositions of the experimental data using several val-
ues of α in Eq. (5), from α = 0 (purely temporal) to α = 1
(purely spatial decomposition). The results for all animals
indicated inadequacy of temporal decompositions. Fig. 4
A shows a typical component obtained through the tem-
poral ICA. The spatial profile lacks well-defined structure
and occupies substantial region in space, and the temporal
component is strongly oscillatory including the time be-
fore stimulation. On the other hand, components obtained
for α = 1 (spatial ICA) were more localized in space and
allowed for sound physiological interpretation (Fig. 4 B).
Also the time courses of the strongest components were
well-behaved with small or absent fluctuations for times
up to 2-3ms after the onset of simulation, followed by non-
trivial behavior, often correlating well with parts of LFPs
recorded near the putative center of the source. The fail-
ure of temporal ICA in view of the results of the spatial

Fig. 4 Examples of components typically obtained with temporal
and spatial ICA (Rat 1). A) Temporal ICA, α = 0. Note that the
time-course of the activation is not related to the stimulation (0ms).
It is also hard to interpret the observed spatial pattern in physiologi-
cal terms. B) Spatial ICA, α = 1. The spatial component has a clear,
physiologically meaningful organization (localized activity in VPM).
Before stimulation this component is not active. Two waves of acti-
vation (4-6 ms and 20-30 ms) may be interpreted as incoming sen-
sory activation and the activation of cortico-thalamic feedback, re-
spectively. The spatial profiles are shown at times of maximum of the
temporal counterparts (vertical lines in the lower panels of A, B).

decomposition can be understood as a consequence of the
temporal correlation of the activity of different sources.

As another sanity test of the procedure used we studied
its stability with respect to the starting point of the algo-
rithm. As described in Section 2.3 we ran the algorithm 30
times with random initial conditions and then performed
clustering on all 720 (24×30) components, dividing them
into 24 clusters. For α = 1 the procedure gave 12 clus-
ters of size 30 (containing only one component from each
run), with 5 subsequent clusters containing 31 or 32 com-
ponents each (i.e. one or two mistakes). This means that
17 components were estimated reliably. On the other hand,
for α = 0.5 we obtained only one cluster of size 30 and
another one of size 28, several smaller clusters (between 1
and 23 components) and one huge cluster comprising 457
components from all runs. Based on the visual inspection
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of components obtained for different α , on the clustering
analysis, and on the results from tests of different variants
of ICA on several sets of model LFPs, we chose to use the
spatial ICA (α = 1) to process the experimental data.

Observing the recorded potentials one can see stimu-
lus evoked waves at almost each of 140 positions (Fig. 3).
This activity pattern encompassed several distinct regions
of the thalamus due to massive divergence of the ascend-
ing fibers and heterogeneous inputs from various vibrissal
afferents (for a review, see Waite (2004)) and the timing
order of their activation might shape specificity of infor-
mation which is passed on to the cortex. Figure 3A shows
EPs recorded at one coronal plane (-3.7 mm from Bregma)
in Rat 1. There is only one early EP that clearly stands out
in this view suggesting the short latency activation (sig-
nal from the electrode just below the zona incerta, position
2_3_7). Other locations share many similar deflections of
recorded traces which may partially result from electro-
tonic spread of field potentials.

To decompose the complex spatiotemporal activation
pattern of voltage responses evoked in the rat’s thalamus
by sensory stimulation we applied the ICA/iCSD method.
Figure 5 exemplifies two components (out of 24) which
constituted the current sinks with the shortest latencies
evoked specifically in the first order somatosensory thala-
mic nucleus, i.e. the ventral postero-medial nucleus (VPM)
in Rat 7. The spot of activation differentiated by the first
component in Fig. 5A was located at the border of VPM
and the posterior thalamic nucleus (Po) and reached its
maximum at 3.6 ms after deflection of a bunch of con-
tralateral whiskers. With a little delay, the second, stronger,
component (Fig. 5B) activated more lateral part of the dor-
sal VPM and reached its maximum at 4.7 ms after stim-
ulation, i.e. about 1 ms later than the first one. The de-
tailed analysis confirmed that the locations of the two sinks
overlapped the expected positions of so called ‘heads’ (first
component) and ‘cores’ (second component) of barreloids,
i.e. the neuronal groupings representing the stimulated bun-
dle of large vibrissae (Pierret et al. 2000; Urbain and De-
schênes 2007).

Analogous components recorded in Rat 1 are presented
in Fig. 6. The faster, weaker component peaks at 4.0ms af-
ter stimulation (black trace in Fig. 6E); the second com-
ponent dominates about 1ms later (gray trace in Fig. 6E).
To show the different dynamics of the two components we
plot their sum in Fig. 6B and D. As time goes on, the first
component originally dominates the other (shown at the
latency of 3.6 ms at Fig. 6B), then the second component
takes over (shown at the peak of the second component,
latency of 5.2 ms, Fig. 6D). Fig. 6A and C contrast the
complete pattern of tissue activation 3.6 and 5.2 ms after
the onset of stimulus with the sum of the currents given
by the two components under discussion shown in Fig. 6B
and D.

Fig. 5 Experimental data from Rat 7. Two independent components
(A, B) with current sinks in somatosensory thalamus. The first com-
ponent (A) is located at the border of VPM and Po, the second,
stronger component (B) is located in more lateral part of the dor-
sal VPM. The locations match the expected positions of ‘heads’ and
‘cores’ of barreloids, see text.

’heads’ ’cores’
1 4.0 5.2
2 4.1 5.0
3 4.6 5.8
4 5.1 5.9
5 4.2 5.1
6 — 4.8 (small amplitude)
7 3.6 4.7

Table 1 Peak latencies for ’core’ and ’head’ components in all rats.

The sequence of described activation could be traced in
data from all rats (Table 1) but the position of the first com-
ponent was accurately placed at the VPM/Po border only
in five animals due to the matched locations of recording
electrodes (as in shown examples of Rat 1 and 7). In an-
other rat (Rat 4) the first component was weaker and in
Rat 6 it was included into less weighted, mixed compo-
nents obtained in the analysis. The experimental dataset
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Fig. 6 Experimental data from Rat 1. A), C) Full CSD reconstruction and B), D) sum of the CSD contained in the ’head’ and ’core’ components
extracted using spatial ICA. E) The time course of the two extracted components, black line represents the component placed at the border of
VPM and Po, gray line — at VPM core). The time after stimulation is 3.6ms in A), B), and 5.2 ms in C), D), marked with vertical lines on the
temporal plot, E). See text for details.

analyzed above (Rat 1), is available together with a MAT-
LAB viewer5.

6 Summary and discussion

In this paper we have shown that the combination of ICA
following iCSD reconstruction from EP recordings on a
regular grid is a powerful technique for extraction of func-
tional components of neural dynamics. The method de-
scribed here brought up new, more detailed information
on the latency and spatial location of specific activity con-
veyed through various parts of the rat somatosensory tha-
lamus. This was possible due to two characteristics of elec-
trophysiological data utilized by the method. First, averag-
ing of EPs makes it possible to extract accurate anatomical
position and time dependence (dynamics) of small current
sources accompanying the different volleys of conveyed
spike activity. Second, utilizing both the physiological and
anatomical results from the same animal allows for extrac-
tion of highly specific, individual relationships between the
two data sets.

We have tested different variants of spatiotemporal ICA
applied to CSD and LFP, from purely temporal to purely

5 http://www.neuroinf.pl/Members/
szleski/iCSD_data/ICviewer

spatial decompositions. For the cases tested the temporal
ICA usually gave meaningless results. This is probably
the result of observed temporal correlation between sets
of sources receiving common input. For some sources spa-
tiotemporal ICA worked best, however, for our experimen-
tal data spatial ICA seems to extract the functional com-
ponents most efficiently. In principle one could perform
ICA decomposition and CSD reconstruction in either or-
der. However, as the ICA procedure is nonlinear the re-
sults obtained are very different. Indeed, as we showed, it
turns out that ICA of LFP results in very poor decompo-
sition. This is an effect of the long range of electric po-
tential which smears current sources in the LFP picture.
As a result, the distribution of CSD values of a source
will have a higher kurtosis than the distribution of values
of LFP generated by this source. The ICA algorithm we
used assumes high kurtosis of the distributions of spatial
profiles, so the better localization of reconstructed current
sources versus potentials is an advantage. This is why we
chose to use iCSD first, and then spatial ICA, to decom-
pose the neural dynamics obtained from extracellular mul-
tielectrode recordings into meaningful, functional compo-
nents .

Application of any ICA algorithm to data always leads
to some “independent” components in the context of the
given framework. It is non-trivial to verify that they are the
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meaningful, or functional as we say, components one re-
quires. Our conviction that the components obtained
through ICA on iCSD in our experiments are indeed mean-
ingful comes from the positive results of extensive testing
on different types of data and from the structure of the spa-
tial profiles and time courses of the obtained components
which allow for meaningful physiological interpretation.
We believe that further confirmation can be obtained by
realistic modeling of the system generating the measured
signals. Having control over different nuclei and their dy-
namics we will be able to verify if indeed the components
obtained through our procedure are generated in different
functional structures.

The physiological validity of the proposed method is
supported by several features of the resulting components.
First, the components are clearly separated (cf. Fig. 5 and
6), with neither of the components calculated for a given
animal having similar location in space and time simulta-
neously. Second, most of the activated sources are tightly
anchored to the somatosensory pathway structures known
from the literature as relaying the vibrissal input (Waite
2004).6 Specifically, among few strongest components we
typically found the ones with short latencies located in the
first order thalamic nucleus VPM and zona incerta, struc-
tures known to receive strong and fast excitatory vibrissal
input (Diamond et al. 1992; Nicolelis et al. 1992).

The results presented in Fig. 5, 6 based on the proposed
ICA/iCSD method deliver the first functional confirmation
of the separation between two pathways conveying the so-
matosensory information via the principal trigeminal nu-
cleus and that part of VPM, which contains the cytochrome
oxidase-rich barreloids (Land et al. 1995; Veinante and De-
schênes 1999; Urbain and Deschênes 2007). The anatom-
ical locations of both pathways were recently well estab-
lished. The stratum of VPM at its dorsomedial margin
(‘heads’ of barreloids) contains cells with obligatorily multi-
whisker input whereas neurons from more lateral part of
dorsal VPM (’cores’ of barreloids), at certain levels of anes-
thesia, are capable of conveying information from single
vibrissae (Urbain and Deschênes 2007). Thus, judging from
their anatomical locations, the two components differen-
tiated in our experiment would represent the multi- and
single-whisker pathways, correspondingly. The fact that the
cells from the principal trigeminal nucleus giving off the
axons of the barreloid ‘head’ pathway have larger somata
than those of the ‘core’ pathway (Veinante and Deschênes
1999; Lo et al. 1999) suggests that they may also conduct
spikes with larger speed which is in line with our find-
ings that the first component, encompassing ‘heads’ of bar-
reloids reaches its maximum faster.

6 The single exception is Rat 6, where the recording grid encom-
passed the border with cortical tissue. For this rat we found three
strong cortical components with long latencies accompanied by mod-
erate strength components typically located at somatosensory thala-
mus.

It is worth emphasizing that our method which aver-
ages the volleys of activity with specific spatiotemporal
characteristics is much more accurate in this respect than
analyzes based on single unit recordings, as the spiking of
single neurons in anaesthetized preparation is capricious
and the required number of cells necessarily leads to av-
eraging data from many animals. In contrast, our method
allows for reliable analysis of data from a single animal.
For example, the results shown in Fig. 6 quite well differ-
entiate the two parallel volleys traversing the thalamus with
different time dynamics and via different thalamic subre-
gions. Obviously, one would need a group of animals to
identify all sources of smaller amplitude.

Abbreviations

APT anterior pretectal nucleus
DLG dorsal lateral geniculate nucleus
Hipp hippocampus

LD latero-dorsal thalamic nucleus
LP lateral posterior thalamic nucleus

MGM medial geniculate nucleus, medial part
Po posterior thalamic nuclear group
Rt reticular thalamic nucleus

SN substantia nigra
VPM ventral postero-medial thalamic nucleus
VLG ventral lateral geniculate nucleus

ZI zona incerta
ZIc caudal part of zona incerta
cp cerebral peduncle
ic internal capsule

ml medial lemniscus
opt optic tract
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