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Abstract The recent development of large multielectrode
recording arrays has made it affordable for an increasing
number of laboratories to record from multiple brain
regions simultaneously. The development of analytical
tools for array data, however, lags behind these technolog-
ical advances in hardware. In this paper, we present a
method based on forward modeling for estimating current
source density from electrophysiological signals recorded
on a two-dimensional grid using multi-electrode rectangular
arrays. This new method, which we call two-dimensional
inverse Current Source Density (iCSD 2D), is based upon
and extends our previous one- and three-dimensional
techniques. We test several variants of our method, both
on surrogate data generated from a collection of Gaussian
sources, and on model data from a population of layer 5
neocortical pyramidal neurons. We also apply the method to
experimental data from the rat subiculum. The main
advantages of the proposed method are the explicit
specification of its assumptions, the possibility to include

system-specific information as it becomes available, the
ability to estimate CSD at the grid boundaries, and lower
reconstruction errors when compared to the traditional
approach. These features make iCSD 2D a substantial
improvement over the approaches used so far and a
powerful new tool for the analysis of multielectrode array
data. We also provide a free GUI-based MATLAB toolbox to
analyze and visualize our test data as well as user datasets.
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Introduction

To understand the brain at the systems level one needs
precise information regarding the spatial and temporal
activation of different neuronal populations. The recent
developments in multielectrode construction have opened
new possibilities for the electrophysiologist, providing the
means to record extracellular potentials at tens to hundreds
of closely spaced positions simultaneously (Csicsvari et al.
2003; Barthó et al. 2004; Buzsáki 2004; Blanche et al.
2005; Du et al. 2008). To take full advantage of this new
technology, new data analysis methods must be developed
to extract useful and precise information from the masses of
data that we can now record relatively easily.

The high-frequency part of extracellular signals contains
information about firing of action potentials in neurons
within a distance of 0.1 mm or so around the individual
recording contacts (Buzsáki 2004; Pettersen and Einevoll
2008). The low-frequency part, the local field potential
(LFP), thought to be generated by synaptic inputs and their
dendritic return currents, has a larger spatial spread due to
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volume conduction (Mitzdorf 1985; Pettersen et al. 2008;
Katzner et al. 2009; Xing et al. 2009). The standard method
of analysis for LFP has been to estimate the current-source
density (CSD), i.e., the net volume density of current
entering or leaving the extracellular tissue (Lorente de No
1947; Pitts 1952; Plonsey 1969; Nicholson and Freeman
1975; Freeman and Nicholson 1975; Mitzdorf 1985).

The Poisson equation provides the connection between
the extracellular potential Φ and the current source density C
under the assumption of passive spread in an homogeneous
and isotropic medium: σ ΔΦ=–C, where Δ is the Laplace
operator. To estimate C one may use the numerical second
derivative in place of the Laplace operator (Pitts 1952;
Nicholson and Freeman 1975; Freeman and Nicholson 1975).
This approach has been commonplace in the analysis of
recordings from linear (laminar) electrodes inserted perpen-
dicular to cortical layers (e.g. Haberly and Shepherd 1973;
Mitzdorf 1985; Schroeder et al. 1992; Ylinen et al. 1995;
Lakatos et al. 2005; Lipton et al. 2006; Rajkai et al. 2008; de
Solages et al. 2008). In this setting one has assumed that the
extracellular potential (and by implication the current-source
density) is constant in the lateral directions, an approximation
that cannot always be justified (Nicholson and Freeman 1975;
Pettersen et al. 2006; Einevoll et al. 2007; Pettersen et al.
2008; Katzner et al. 2009; Xing et al. 2009). Another
problem with the standard numerical derivative approach is
that it is impossible to estimate CSD at the outermost
electrode contact positions unless one makes assumptions
unjustified with complex electrode geometries (Vaknin et al.
1988; Łęski et al. 2007). Giving up the boundary becomes a
particularly severe issue in two- and three-dimensional elec-
trode geometries where the relative number of such boundary
contacts becomes large (Łęski et al. 2007).

The estimation of current sources from recorded potentials
has a long history in the interpretation of EEG (Guljarani 1998;
He and Lian 2005; Nunez and Srinivasan 2006) and ECoG
signals (e.g. Freeman 1980; Zhang et al. 2008). The inverse
methods involve calculating a forward model of propagation
of electric fields from the sources inside the brain to the
recording electrodes on the scalp (EEG) or cortical surface
(ECoG). The model is then inverted to estimate the sources
from the recorded potentials. For these signals, which are
recorded outside the source region, one common approach is
to assume their sources to be a small number of mesoscopic
dipoles located so far away from the electrode contacts that the
far-field approximation can be evoked. However, more general
source distributions have also been considered (for review see
e.g. He and Lian 2005; Nunez and Srinivasan 2006).

For multielectrode contacts positioned inside neural tissue
in the immediate vicinity of the neuronal sources, the far-field
dipole approximation for calculating the forward solution is
not applicable. Moreover, the approximation where one
assumes the neuronal sources to be built up of pairs of two

balanced current monopoles is unsuitable. In Lindén et al.
(2010) (see Fig. 6) it was shown that both of these simplified
source representations provided poor approximations of the
local field potential (LFP) generated by neurons within
distances of a millimeter or so. A better source representation
for this situation is the continuous current-source density, and
we have developed a forward-inverse scheme for CSD
estimation called the inverse current source density (iCSD)
method (Pettersen et al. 2006; Łęski et al. 2007; Wójcik and
Łęski 2009). A main advantage of the iCSD method
compared to the standard CSD analysis is that assumptions
about the geometry of the CSD as well as electrical boundary
conditions can be incorporated explicitly in the estimator.

The iCSD method assumes a specific form of the
distribution of the current sources, for instance, linearly
varying between the recording points. It connects parameters
of the CSD with the potentials at the grid through forward
calculation of the potential generated by the assumed
distribution. While the idea is general and applicable to
different geometries, until now it has been developed only for
recordings with laminar (linear) electrodes (Pettersen et al.
2006) and recordings on a three-dimensional grid of
electrode positions (Łęski et al. 2007).

Given the growing availability of two-dimensional
electrode arrays, such as multi-shank laminar electrodes
(Buzsáki 2004), it is presently important to provide efficient
and general methods for CSD estimation from such
recordings. Since the 3D iCSD cannot be applied directly
to such recordings (as it requires at least a few contacts in
all three spatial directions) in the present paper we develop
a specific iCSD framework for the analysis of data from
two-dimensional multielectrode arrays. This 2D iCSD
method is validated on LFP data generated by several
types of test sources where we know the true underlying
source distribution and, thus, can make a quantitative
assessment of the estimation accuracy. We first consider
various types of Gaussian current sources, and then move
on to analyze LFP generated by synaptically activated
model populations consisting of about one thousand
morphologically-reconstructed layer 5 neocortical pyramidal
neurons (Mainen and Sejnowski 1996; Pettersen et al. 2008).
For all tests we compare our iCSD estimates with estimates
from the traditional CSD method. The proposed framework
is further illustrated by application to a set of recordings with
an 8×8 multi-shank electrode from the rat subiculum.

A key feature of the iCSD method is the explicit
incorporation of assumptions regarding geometries of the
underlying CSD sources. For the present situation with a
2D multi-electrode grid, a key parameter is the assumed
spatial spread of CSD in the direction perpendicular to that
grid (the standard CSD method neglects the variation of
extracellular potential in this direction, an assumption that
is physically unrealistic in that it does not correspond to any
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known CSD distribution). This is also the main difference
between the 2D and the 3D iCSD; in the 3D case the
behavior of CSD in the direction perpendicular to the main
plane is calculated, whilst here it must be modeled. Usually,
it is not clear a priori, which value of this parameter leads to
optimal reconstruction. To circumvent this we found it
useful to make iCSD estimates assuming different parameter
values, and investigate how the salient features of the CSD
pattern depend on the choice made (see Freeman 1980 for
similar analysis of the influence the “focal depth” parameter
on the analysis of ECoG data). To facilitate this approach we
have developed a MATLAB toolbox with a simple graphical
user interface to allow users to easily and rapidly investigate
the dependency of the 2D iCSD estimates on both this
parameter as well as the choice of boundary conditions. The
toolbox bundled with three of the datasets used in this
paper is provided under GNU General Public License v.3 or
later and is available from the INCF software repository,
http://software.incf.org/. The software and data can be used
in published research provided this article is cited.

Materials and Methods

Inverse Current Source Density in Two Dimensions

Suppose that we measure the electric potential Φ at N
points, x1, x2, …, xN. Potentials are functions of the density
of current sources C according to the Poisson equation
(Nicholson and Freeman 1975):

sΔΦ ¼ �C; ð1aÞ

where σ is the conductivity of the tissue, here assumed to
be homogeneous and isotropic.

The main idea behind iCSD is to assume a specific
distribution C(x,y,z) of the current sources from a class
parameterized with parameters C=[C1, C2, …, CN]. Once a
model of CSD is assumed, it is a simple matter to evaluate the
potentials, which would be measured at any point in space, by
summing the contributions from every point source:

Φðx; y; zÞ ¼
Z

Cðx0; y0; z0;CÞ dx0dy0dz0

4ps
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� x0Þ2 þ ðy� y0Þ2 þ ðz� z0Þ2

q
ð1bÞ

This leads to the relation

Φ ¼ Φðx1Þ;Φðx2Þ; . . . ;ΦðxNÞ½ � ¼ F C½ �; ð2Þ

and if we choose the appropriate model of the CSD
distribution, the operator F is linear and can be inverted.

We thus obtain values of N parameters in terms of the
measured potentials:

C ¼ F�1 Φ½ �; ð3Þ

which gives the model CSD in its whole domain.
In this work we consider potentials measured on a two-

dimensional regular grid of electrodes of N=nx ny points.
Let us position the axes so that the plane of the grid
corresponds to z=0 and the electrode positions are

ðx; y; zÞ ¼ mΔx; nΔy; 0ð Þ;

where Δx and Δy is the spacing in the x and y directions,
m=1,…,nx, n=1,…,ny. We can uniquely decompose the
CSD that generated the measured potentials into parts
symmetric and anti-symmetric in z

C x; y; zð Þ ¼ CS x; y; zð Þ þ CA x; y; zð Þ;

where CS x; y; zð Þ ¼ C x; y; zð ÞþC x; y;�zð Þð Þ=2;CA x; y; zð Þ ¼
C x; y; zð Þ � C x; y;�zð Þð Þ=2. Substitution to Eq. 1b shows
that the potentials measured in the plane of the grid come
only from the symmetric part, so this is the only thing we
can hope to reconstruct.

Our goal is to recover CS(x,y,0). In the generic situation,
we have no additional information about the distribution of
CSD along the z axis, apart from the fact that it has finite
extent. Therefore, we make the simplest possible assump-
tion of a model CSD distribution which is a product of an a
priori unknown two-dimensional profile c(x,y) and a
specific symmetric profile in the perpendicular direction,
i.e.

C x; y; zð Þ ¼ CS x; y; zð Þ ¼ c x; yð ÞHðzÞ:

It is convenient to normalize the z-profile H(z) so that H
(0)=1.

The proposed approach would work best if anatomy of
the probed volume suggests such a product structure of the
CSD, for example, in case of a grid inserted perpendicularly
to a layered brain structure. This is similar to the one-
dimensional case where the most meaningful estimates of
CSD can be obtained in laminar structures, such as cortex
(Nicholson and Freeman 1975; Pettersen et al. 2006). If
substantial extra knowledge of anatomy of the neighboring
tissue or the processes taking place are known, one can
develop specific variants of the method building more
complex models of the assumed CSD. In general, however,
we believe the assumptions we make are reasonable and, as
our tests in the following pages show, the proposed
approach does work adequately on a number of model
sources.
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For H(z) we take here either the step function, H(z)=1
for −h≤z≤h and H(z)=0 otherwise, or a Gaussian: H(z)=
exp(−z2/2h2). We choose the normalization H(0)=1 so that
c(x,y)=C(x,y,0). The function c(x,y) is in the simplest case
an interpolation between the nodes. This could be either
nearest neighbor interpolation (we set the value at any
spatial point equal to the value at the nearest node), linear
interpolation (the function describing values between the
nodes is piecewise linear), or spline interpolation (which uses
third-degree polynomials to produce distributions which vary
more smoothly than in the linear case). In the simplest case we
set c(x,y) to zero for positions outside the grid (we will refer
to this case as “no boundary conditions”).

We showed for the three-dimensional case (Łęski et al.
2007) that the “no boundary conditions” assumption can
lead to large reconstruction errors if some of the sources
generating the fields are located outside the grid. This is
because the reconstructed CSD tries to compensate for the
effect of external sources with components within the grid,
which leads to artifacts. One possible solution is to consider
an extended layer of grid points, as shown in Fig. 1. Then at
each of these additional points we can either (i) set the CSD
to zero (which we denote by B boundary conditions), or (ii)
copy the value from the nearest point of the original grid
(denoted by D). For the latter case the values at additional
points are not fixed. Such a procedure is well-defined for all
points of the extended grid, including corners. We found
that both variants of this approach improve the reconstruc-
tion fidelity within the grid (Łęski et al. 2007). In all cases
the distribution of sources is completely described with N
parameters.

We now consider the situation where the CSD is
assumed to be ‘step-wise’ constant (Pettersen et al. 2006),
i.e., the CSD is assumed to be constant within the rectangle
in the xy-plane assigned to each grid point. For this model
the matrix F can be calculated as follows: Denote by (xi, yi)

and (xj, yj) the positions of the i-th and j-th grid points,
respectively, i and j go from 1 to N. The N parameters of the
CSD distribution will be the values of C at the nodes,
which we denote by Ci, i goes from 1 to N. The potential at
the node i, Φi, is equal to

Φi ¼
XN
j¼1

FijCj: ð4Þ

The matrix element Fij is:

Fij ¼ 1

4ps

ZxjþΔx=2

xj�Δx=2

dx

ZyjþΔy=2

yj�Δy=2

dy

Z1
�1

dz
HðzÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � xÞ2 þ ðyi � yÞ2 þ z2
q : ð5Þ

The construction of the matrix F for linear and spline
interpolation is given in the Appendix. The procedure is
analogous, but the calculations are more complex.

To compare the accuracy of the iCSD method quantita-
tively against the traditional CSD estimation method, we
had to extend the traditional CSD method to predict
spatially continuous CSD profiles. The following procedure
was used: the grid of electrodes was extended (cf. Fig. 1)
and at every point of this extension we copied the potential
from the nearest point of the original boundary (Vaknin et
al. 1988), which is non-ambiguous. The numerical second
derivative was then calculated at the points of the initial
grid and spline-interpolated in between.

Generation of Population Model Data

In order to test the new 2D iCSD method we generated
model data for columnar populations of reconstructed
layer-5 pyramidal cells receiving a combination of excit-
atory and inhibitory inputs resembling stimulus-evoked
activation (Pettersen et al. 2008). In the simulation, we
know the actual CSD generating the local-field poten-
tials recorded (virtually) at the grid points of the
multielectrode. We can use these to quantify the quality
of CSD estimates from the recorded LFPs reliably. A
similar procedure was used by Pettersen et al. (2008) to
test the 1D iCSD method. We studied CSD and LFP
generated by three such model columns spaced equally
along a line as one “central” column surrounded by two
“lateral” columns, and we assumed two positions of the
virtual electrode grid with respect to these columns (see text
below and Fig. 6a, b, for details). Two synaptic stimulation
patterns were considered.

Neuron templates

A cell population resembling a layer-5 pyramidal-cell
network in a neocortical column was built based on the

Fig. 1 Comparison of ‘no boundary treatment’ vs. b or d distribution
of sources. In the distribution with no boundary treatment (a) the CSD
is non-zero only inside the rectangular grid. To accommodate for
sources lying outside of the grid, and to avoid artifacts in the
reconstructed CSD, a grid with an additional layer of nodes is used
(b), which results in an additional layer of non-zero CSD
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compartmental model from Mainen and Sejnowski
(1996). The compartmental model was downloaded from
SenseLab’s ModelDB (http://senselab.med.yale.edu/;
Hines et al. 2004; Migliore et al. 2003), and the simulation
tool NEURON (http://www.neuron.yale.edu/; Carnevale
and Hines 2006) was used to compute the neuronal
dynamics. The neuron model has various active conductances
in the axon segments, axon hillock, soma and dendrites.
Similar to Pettersen et al. (2008), the original model of
Mainen and Sejnowski (1996) was modified as follows: the
active conductances in the dendrites were removed, the
electrode was removed from soma, the whole neuron was
rotated so that the primary dendrite was aligned to the
positive y-axis, and the axon was then aligned straight
downward along the negative y-axis.

Two different stimulus patterns were used for the
pyramidal neuron model: one with combined apical
excitation and basal inhibition, and one with combined
basal excitation and basal inhibition. These two patterns
correspond to stimulus patterns 2 (SIP2) and 4 (SIP4) in
Pettersen et al. (2008). In both cases excitation and
inhibition were tuned so that the soma potential was just
below threshold value so that the neuron did not produce
any action potentials.

Synaptic input was density-based, i.e., not based on
point processes. Thus, the synaptic input was considered to
be scattered throughout the whole branch to which it was
applied, similar to Holt and Koch (1999). The excitatory
synaptic input was conductance-based with an exponentially
decaying temporal profile,

gej ¼ gemaxd
e
j

1

te
e�ðt�Δe

j Þ=teqðt �Δe
j Þ: ð6Þ

Here gej is the synaptic membrane conductance in branch
j of the neuron, gemax is the maximum conductance, Ce is the
time constant of the excitatory input, Δe

j is the onset time of
synaptic input in branch j, and θ(t) is the Heaviside unit
step function. dej is unity if branch j is set to receive
excitatory input in the model, and zero if not. The synaptic
input patterns, SIP2 and SIP4, both had the same excitatory
time constant, Ce=5 ms. The maximum conductance for the
apically excited neurons (SIP2) was gemax ¼ 0:001S=cm2

while the maximum conductance for the basally excited
neurons (SIP4) was gemax ¼ 1� 10�4S=cm2.

The basal inhibitory input was similarly given by

gij ¼ gimaxd
i
j

1

t i
e�ðt�Δi

jÞ=t iqðt �Δi
jÞ: ð7Þ

An inhibitory time constant Ci=10 ms was used. The
maximum conductance gimax was adjusted so that the
neuron did not produce action potentials. SIP2 had a

maximal inhibitory membrane conductance of gimax ¼ 5�
104S=cm2, while for SIP4 gimax ¼ 3� 104S=cm2. For both
stimulus patterns the inhibitory synaptic stimulus was
applied to the soma and each branch of the basal dendrites,
i.e., dij was unity only for the soma and these dendritic
branches j. The basal excitation in SIP4, in contrast to the
basal inhibition, did not include the soma, the first branch
of the dominant apical dendrite, nor the side branches to
this apical dendrite. The apical excitation of SIP2 was
applied to all dendritic branches above the first branching
point of the apical dendrite.

The total synaptic transmembrane current in segment k,
being a part of branch j, is then given by

isyn;k ¼ gej ðVk � EeÞ þ gijðVk � EiÞ; ð8Þ

where Ee=0 is the reversal potential for the excitatory
synapses, and Ee=−70 mV is the reversal potential for the
inhibitory synapses. Vk is the membrane potential in
segment k of the neuron. The soma resting potential for
the pyramidal neuron templates was −64.5 mV for both
stimulus patterns. To include some temporal jitter in the
onset of synaptic inputs, each branch’s synaptic input was
started separately in time, i.e., the Δj's were slightly
different: the onset was chosen stochastically assuming a
Gaussian distribution around the mean Δsyn with a standard
deviation of ssyn ¼

ffiffiffi
5

p
ms. The dynamical response of the

pyramidal neuron to a particular synaptic-input pattern was
computed in NEURON, and the transmembrane currents
for all segments were written to file with a ten-digit
precision. The extracellular potential for the neuronal
templates was then computed using the line-source method
(Holt and Koch 1999). The extracellular potential fnðr; tÞ
from a neuronal template n is then found by a sum over all
segments of this neuron, i.e.,

fnðr; tÞ ¼
XNk

k¼1

InkðtÞ
4psΔsk

1n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2nk þ r2nk

q
� hnkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2nk þ r2nk

q
� lnk

�������
�������; ð9Þ

where Nk is the number of segments in the pyramidal
neuron, Δsk is the length of line segment k of this neuron,
rnk is the radial distance (perpendicular to the segment)
from segment number k, hnk is the longitudinal distance
(parallel to the dendritic segment) from the end of segment
number k, lnk ¼ Δsk þ hnk is the longitudinal distance from
the start of the segment to the recording point, and Ink(t) is
the transmembrane segmental current (the ionic currents
plus the capacitive current). The extracellular conductivity
used in the simulations was σ=0.3 S/m (Hamalainen et al.
1993). The extracellular population activity was calculated
by linear superposition of the single pyramidal-neuron
templates.
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Structure of Population and Population Activity

The modeled layer-5 pyramidal populations have the typical
sizes and spatial extensions of cortical columns, e.g., as seen
for the layer-5 pyramidal population in rat barrel cortex
(Beaulieu 1993; Feldmeyer and Sakmann 2000). They
contained 1,000 pyramidal neurons, each randomly rotated
around their primary dendrite and receiving the same spatial
stimulus pattern. Their somas were positioned stochastically
with uniform probability density within a cylinder oriented
along the y-axis with height 0.4 mm and a diameter of
0.4 mm (cf. Fig. 5a). The mean synaptic onset times Δsyn;n

of the 1000 neurons in each population were chosen
stochastically from a Gaussian distribution with a standard
deviation of σsp=5 ms. The probability distribution was
truncated, i.e., set to zero, for times 2σsp=10 ms smaller or
larger than the mean value. This gives a maximum temporal
translation of 20 ms between the neurons within the
population.

Computation of Extracellular Potentials from Population
Activity

Based on the set of stochastically chosen mean synaptic
onset times (Δsyn;n) for all 1,000 neurons in each
population and the extracellular single-neuron templates in
Eq. 4, the extracellular potential from the entire population
was calculated as

Φðr; tÞ ¼
XN
n¼1

fnðr; t �Δsyn;nÞ; ð10Þ

where N=1,000 is the number of neurons in the population,
and f n (r, t) is the extracellular signature of neuron n with
mean synaptic onset at time zero. The potential was
computed at 1656 assumed recording positions defined
by a 9×23×8 grid where the assumed recording
positions in x-direction were from −0.7 mm to 0.7 mm
with inter-contact distance of 0.2 mm, in the y-direction
from −0.8 mm to 1.4 mm with an inter-contact distance of
0.1 mm, and in z-direction from −0.8 mm to 0.8 mm with
inter-contact distance of 0.2 mm. In the y-direction the
populations were centered so that the average soma
position was in y=0.

We tested several spatial placements of the populations
of model neurons, which we call ‘central’ and ‘lateral’
(Fig. 6a, b). For the central population the horizontal
centering was in (x,z)=(0,0), while the lateral populations
were centered in (x,z)=(0,–0.6) mm and (x,z)=(0,0.6) mm.
The lateral populations centered in (x,z)=(0,0.6) were
produced by mirroring the populations centered in (x,z)=
(0,–0.6) mm about the xy-plane, i.e. they shared the
(mirrored) stochastic parameters discussed above (somatic

placement, orientation, synaptic onsets and neuronal time-
shifts). The center population was created with a new set of
stochastic parameters.

To avoid singularities in Eq. 9 no dendritic segments
were allowed to be closer to the assumed recording contacts
than 5 μm; dendritic segments closer than this distance
were given a radial distance of rnk=5 μm when the
extracellular potential was computed through Eq. 9.

Computation of the Actual Model CSD

When computing the potentials at assumed recording
positions, all neural segments except for the somas were
treated as linear current sources (Eq. 9). However, when
computing the actual CSD for these populations, the
current-sources were treated as point sources to improve
computational efficiency. Each point source was then
positioned at the center of its corresponding line segment.

The CSD is defined as the total current source within a
small volume element, divided by the volume of this
element. Because of the inhomogeneous nature of the CSD
one cannot choose this volume element to be arbitrarily
small without accepting a high degree of spatial noise due
to the high variance in the number of sources in
neighboring cubes. For this model study we computed the
real CSD based on the total current-source within cubes
with sides of 50 μm, which gave an acceptable high
resolution without too much spatial noise.

Experimental Procedure

Rat Subicular Recordings

Adult male Wistar rats (200–400 g) were anaesthetized
using urethane (1.5 g/kg; 30% w/v i.p.) and then placed in a
stereotaxic frame with body temperature maintained at 37°C
using a homoeothermic blanket (Harvard Apparatus, UK). A
midline scalp incision was made to expose the skull and
craniotomies were made above dorsal CA1 (AP: −4.5 mm,
ML: 3.0 mm) and subiculum (AP: −8.4 mm, ML 3.5 mm)
relative to Bregma (Gigg et al. 2000). The dura was then
excised to allow insertion of electrodes. All procedures were
in accordance with the Animals (Scientific Procedures) Act
1986, UK.

Electrodes and Stimulations

Dorsal subicular recording were made using a 64-contact
probe (a8×8–5 mm 200-200-413, NeuroNexus Technolo-
gies, Michigan, USA). The configuration of the probe
provided eight 413 μm2 contacts at 200 μm spacing on
each of the eight 5 mm long shanks. The probe was inserted
at a 25° angle from vertical in the sagittal plane so that at
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target the shanks of the electrode were approximately
perpendicular to the main axis of the subicular cell layer.
A bipolar stimulating electrode consisting of two, twisted
Teflon coated, tungsten microwires (125 μm diameter,
insulated to the tips; Advent RM, UK) was placed in the
alveus above dorsal CA1 (Fig. 2).

Stimuli were triggered by 5 V analog pulses from a
National Instruments card (PCI-6071E), controlled by
programs written in LabVIEW (v8, National Instruments,
USA). These pulses triggered a constant-current, isolated
stimulator (DS3, Digitimer Ltd., UK). Stimuli were of fixed
duration (0.2 ms). Once electrodes were at target an input–
output curve was plotted of alvear stimulus intensity versus
subicular response amplitude (e.g., Commins et al. 1998).
All subsequent pulses were then set at half the intensity
required to elicit the maximum response from the curve, in
this case, 70 μA.

Single stimulation pulses were presented at a rate of
0.33 Hz for one minute. Perievent histograms of the mean
fEPSP voltage response from these were calculated for
every channel. As two channels had to be used for
stimulation, the final result was an eight-by-eight contact
profile minus two silent contacts. For the application of
iCSD methods we filled these missing grid points with
mean voltages from nearest neighbors. We have shown
elsewhere that this procedure does not introduce much
distortion for a small number of missing channels (Wójcik
and Łęski 2009).

Data Acquisition

Signals were acquired using a Recorder64 (Plexon, USA)
recording system, referenced to ground and amplified at
source using a 20x gain AC-coupled headstage followed by
pre-amplifier conditioning (total gain of 2500x). Other than
the fixed system low-pass (6 kHz) no other filtering was

applied. Local field potential signals were digitized at a
sampling rate of 10 kHz per channel at 12 bit resolution and
stored for offline analyses.

Histological Verification

At the end of the experiment, recording sites were
determined by a combination of visual analyses of electrode
tracks and lesions placed on the upper-most and lowest
electrode contacts using a 30 μA positive current for 3
seconds (Townsend et al. 2002). Animals were subject to
terminal anesthesia (2–3 ml of 30% urethane i.p.) and
transcardially perfused with 100 ml of 0.9% saline followed
by 150 ml of 10% formalin. The brain was removed and
stored in 10% formalin for 24 hours, followed by
immersion in 30% sucrose solution. Frozen 100 μm
sections were made in the sagittal plane. and stained with
Cresyl violet. Electrode placements were assigned with
reference to the rat brain atlas of Paxinos and Watson
(1998).

Results

In this section we study the properties of the proposed
method on several different datasets before we finally apply
it to experimental data. We start with tests of reconstruction
quality for surrogate data with a simple structure (Gaussian
sources) and compare variants of the iCSD method with the
traditional approach for CSD analysis. Then we analyze
more complex data from simulation of columnar popula-
tions of layer-5 pyramidal neurons. Two different patterns
of stimulation (basal and apical) are tested. We then observe
and discuss the asymptotic independence of reconstructed
error (large h limit). With the viability of our approach
assured by tests on these model data, we then use the best

DG

CA3

CA1
Alv 

S

Post

Fig. 2 Histological verification of stimulation and recording electro-
des (a). White circles show placement of electrode contacts (−8.2 from
Bregma, 2.9 lateral to midline). The white square in the inset shows
the position of the stimulating electrode during the recording
(−4.5 mm from Bregma, 2.9 mm lateral to midline). The b panel
shows superimposed mean evoked voltage responses at each electrode

position. Maximal deflections occur mainly in the subicular region.
Stimulating and recording electrode sites are identified on the nearest
slice image to both points using Paxinos and Watson 1998. Black bars
show 1 mm scale. Alv: alveus, CA1, CA3, DG: dentate gyrus, Post:
postsubiculum
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variant of our method to analyze responses evoked by alvear
stimulation recorded on 8 by 8 grid in the rat subiculum.

Tests on Gaussian Sources

Throughout the tests on Gaussian sources we assume that
the potentials are measured on a grid of 8×8 electrodes,
spaced by 0.2 mm in x and y directions. This choice was
motivated by the experimental conditions used later.

Two-Dimensional Gaussian Sources

First we test the method on surrogate sources which have a
product structure c(x,y)H(z), where c(x,y) is a sum of
Gaussians, and H(z) is a step function with h=0.5 mm (the
exact formula for c(x,y) is given in the Appendix). We
calculate the potentials generated by such sources on the
assumed electrode grid. In the simplest case we assume that
sources are non-zero only for x and y inside the electrode grid

(Fig. 3a). For this case both linear and spline interpolation
iCSD methods perform very well, provided we assume the
correct value for h (Fig. 3c, d). The traditional (numerical
second derivative) method also locates the sources, however,
their shapes are distorted (Fig. 3b). To quantify the recon-
struction fidelity we use normalized squared error:

e1 ¼ 1

M

ZZ
Cðx; y; z ¼ 0Þ � bCðx; yÞ� �2

dxdy; ð11Þ

M ¼
ZZ

Cðx; y; z ¼ 0Þ2dxdy; ð12Þ

where C(x, y, z=0) are original sources and C
_

ðx; yÞis the
reconstructed CSD in the plane; M is a normalization
constant. Since we are mostly interested in the spatial
profile of the CSD, as the precise values are unavailable
because the conductivity is usually unknown, we also
studied the differences between the original profiles and

Fig. 3 Test of iCSD methods on sources based on two-dimensional
Gaussian functions (arbitrary units). a original Gaussian sources (zero
outside the box, product structure, h=0.5 mm, potentials are measured
on a grid of 8×8 electrodes), b reconstruction using traditional CSD
method, that means numerical double derivative (smoothed), c
reconstruction with linear iCSD method, d reconstruction with spline
iCSD method e–g: the sources are the same as in a, but with h=
0.1 mm. Reconstruction of CSD (spline interpolation) with assumed

h equal to 0.05 mm (e), 0.1 mm (f), 0.2 mm (g). Note different scales
of the three plots: besides distortion of shapes of the sources there is
also a global scaling due to different assumed values of h h–k: the
sources inside the box are the same as in a, but now they are also non-
zero outside the box. Reconstruction with spline iCSD method: h with
no boundary treatment, i with b boundary conditions, j with d
boundary conditions, k reconstruction using smoothed numerical
double derivative
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scaled reconstructions. Specifically, as another measure of
reconstruction error, we took:

e2 ¼ min
a

1

M

ZZ
Cðx; y; z ¼ 0Þ � abCðx; yÞ� �2

dxdy; ð13Þ

where the integrals are over the area spanned by the
electrode grid, and M is a normalization constant defined as
previously.

For the traditional CSD method, the error e1 is 34%,
while it is only 0.097% for the linear iCSD method and
0.019% for the spline iCSD method. Thus, if the assumed
distribution is sufficiently smooth, one can reconstruct the
original pattern faithfully from the limited information
provided by the finite set of measurements. Some of the
large error inherent in the traditional CSD method is due to
incorrect estimation of the CSD amplitude and not the form
of the spatial profile. However, even if the CSD amplitude
is adjusted to minimize the error according to Eq. 13 one
still finds an error of e2=32%, i.e., much larger than for the
iCSD methods.

One of the reasons for using the inverse CSD method
instead of the numerical second derivative, especially in
two- or three-dimensional situations, is that the boundary
data are better utilized. To illustrate this we calculated the
errors (e1) of the reconstruction of the central part of the
grid, i.e., the grid spanned by the electrodes 2–7 both in x
and y. Not surprisingly, in all cases the errors are smaller: :
e1=8.1% for the traditional approach, 0.069% for the linear
iCSD and 0.0063% for the spline iCSD.

Usually we do not know the correct h and we must form
an educated guess based on the available information
(Fig. 3e, f, g). In the source data we used h=0.1 mm and
for reconstructions in Fig. 3e, f, g we took h equal to
0.05 mm, 0.1 mm and 0.2 mm, respectively. If the assumed
h is different from the true h, then slight distortions appear
in the shape of the reconstructed CSD. The errors are: e2=
0.4% for assumed h=0.05 mm, e2=0.019% for the assumed
h equal to the true h (= 0.1 mm), and e2=2.1% if we
assume h=0.2 mm. Moreover, the amplitude of the
reconstructed distribution varies with the assumed h (the
CSD is scaled by a global factor which in this case is
approximately equal to the ratio of true and assumed h).

In the experimental setting the sources often extend
beyond the electrode grid. Hence, we tested the iCSD
methods on potentials calculated using the complete spatial
extent of the Gaussian sources. The situation now changes
dramatically and the variants of the iCSD method assuming
non-zero distribution only inside the grid work very poorly
(Fig. 3h): the reconstruction error is almost 500%.
However, we can overcome this by using B or D boundary
conditions (Fig. 3i, j), which leads to reconstruction errors
e1 of 8.4% and 2.4%, respectively. The traditional method
(Fig. 3k) gives a reconstruction error of e1=24% (e2=19%),

which is much better than iCSD with no boundary
conditions, but substantially worse than iCSD with proper
boundary treatment. If we consider only the central grid,
then the e1 error for iCSD assuming no sources on the
outside is 19%, for B and D boundary conditions e1 is 1.3%
and 0.29%, respectively, and for the traditional CSD we get
e1=11%.

Three-Dimensional Gaussian Sources

The most interesting test case of Gaussian data consists of
truly three-dimensional sources. The set of test sources C
we use here is a sum of four, three-dimensional Gaussians
whose centers are at z ranging from −0.3 mm to 0.6 mm.
The sources were chosen in such a way that in the plane of
the grid, z=0, the distribution was the same as in the
product case studied before (see Fig. 3a, the exact formula
is given in the Appendix). We also used the same two-
dimensional 8×8 grid of electrodes. The questions of
interest are now what h and which boundary conditions
would work best. Our tests on product sources (Fig. 3e, f,
g) suggest that the reconstructed CSD will be defined up to
a multiplicative constant depending on the assumed h.
Therefore, to compare the quality of reconstruction for
different h we have to scale the reconstructed CSD by a
constant and so in this section we use the error e2 as defined
by Eq. 13.

We performed the reconstructions assuming h=(0.05×
2n) mm, n=0,…,6. The reconstruction errors for the method
with D boundary conditions are shown in Fig. 4d where
the two curves are for H(z) being either a step function or
a Gaussian (see figure caption). To understand the
meaning of different values of reconstruction error we
plot the actual CSD in the plane of the (virtual) recording
grid (Fig. 4a) and two examples of reconstructed CSD
(with α set to the values found to minimize the error
for the two different choices of h). Fig. 4b shows results
for h=1.6 mm which corresponds to the smallest error of
reconstruction in the studied regime (e2~10%). Figure 4c
shows the reconstructed CSD for h=0.1 mm which
corresponds to large reconstruction error (e2=20%). From
this test one may conclude that these two different choices
for the H(z) profile (step and Gaussian profiles) give
similar results. The reconstruction error is high for very
small h and reaches minimum for h~1 mm, which is
roughly the extent of the test Gaussian sources. For
comparison, the error for the traditional CSD method is in
this case e2=26%.

Tests on Population Model Data

For tests on our population model data, i.e., the data from
forward modeling on a columnar population of layer-5
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pyramidal neurons, we used potentials calculated on an
array of 8×23 positions, spaced by 0.2 mm in x direction
and by 0.1 mm in y direction. Here, as in the case of three-
dimensional Gaussian sources, we can reconstruct the CSD
up to a multiplicative constant (at least if we are not in the
large-h limit, see the next section). However, unlike the
previous case, we can now reconstruct the whole time-
course of the activity. Therefore, as the error measure we
can take

e3 ¼ min
a

1

M

Z
dt

ZZ
Cðx; y; z ¼ 0Þ � abCðx; yÞ� �2

dxdy; ð14Þ

where the double integral is over the area spanned by the
electrode grid. To calculate this integral we need the actual
model sources in the grid plane, i.e., C(x,y,z=0), and for
this we used the actual model sources averaged locally in
cubes of edge length 0.05 mm (see Materials and Methods).
To obtain bCðx; yÞ we simply used the value of the

reconstructed sources in the middle of the cube. The
normalization constant M was

M ¼
Z

dt

ZZ
Cðx; y; z ¼ 0Þ2dxdy: ð15Þ

The (time-independent) constant α in Eq. 14 was chosen
to minimize the error e3. In Fig. 5 we present reconstruc-
tions of activity of a simulated single column of layer-5
pyramidal neurons (Fig. 5a) in the planar section defined by
the virtual recording electrodes. The electrode grid is placed
along the axis of the apical dendrites of the simulated
population and passes through the center of the cylinder in
which the somas are located.

In the figure we present the reconstruction at one
particular point in time for each type of stimulation
(apical (5 B, C) or basal (5 D, E) excitation), the complete
time course of the simulated activity compared with the best
reconstruction is available as a video file in the supplementary

Fig. 4 Reconstruction error
(Eq. 13) for inferring two-
dimensional current source-
density distribution on a 2D
section through a set of three-
dimensional Gaussian sources.
The spline iCSD method with D
boundary conditions was used.
a Original CSD in the plane of
the measurement grid (arbitrary
units). b Reconstructed CSD for
h=1.6 mm which corresponds to
the smallest error of reconstruc-
tion in the studied regime
(e2~10%). c Reconstructed
CSD for h=0.1 mm which
corresponds to large error of
reconstruction (e2~20%).
d Dependence of reconstruction
error (e) on the assumed width
of the sources (h). The dotted
curve is for H(z) being a step
function, for the solid curve
H(z) is a Gaussian. The recon-
structions in b and c are scaled
with a parameter α to minimize
the reconstruction error, see
text for details. In b and c the
function h(z) is a step function
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material, also available at http://www.youtube.com/icsd2d.
We can see that for both types of stimulation the
estimation of CSD using splines effectively smoothes
the real activity. This is very pronounced in the case of
basal excitation (Fig. 5d), as here the actual CSD activity
is more sparse. The reconstruction errors are 3% for apical
stimulation (Fig. 5c vs. b), and 58% for basal stimulation
(Fig. 5e vs. d). Note that error on the order of 50%
indicates inadequacy of the chosen electrode grid to
resolve the structures arising at the very small spatial
scales in the second case. As seen in Fig. 5d and e the
iCSD method is nevertheless able to reconstruct the gross
features of the actual CSD distribution.

We compared the quality of reconstruction for different
numbers of simulated barrel columns, different types of
stimulation, different placement of the electrode grid with
respect to the sources, and different assumed h (Fig. 6).
Panels A and B in Fig. 6 show the placement of the
electrode grid in the xz-plane. The 8×23 grid of electrodes
extends for 1.4 mm in the x (Fig. 6a) or z (Fig. 6b) direction
and for 2.2 mm in the y-direction. Panels C and D
correspond to apical excitatory stimulation, while panels E
and F show the results for basal excitatory stimulation. The
spatial setup shown in panels A and B is the same for both
stimulation schemes (panels C and E are for setup shown in
panel A, panels D and F correspond to the setup depicted in
panel B). The results show that for each configuration there
appears to be an optimal value of h, as in the case of
Gaussian sources (Fig. 6c, d; Fig. 6e, f). The large
difference in CSD reconstruction errors in cases of apical
(Fig. 6c, d) and basal (Fig. 6e, f) stimulation is the
consequence of very different spatial structure of CSD in
these two cases. For apical stimulation, we observe CSD
activity of high absolute values over a large spatial extent,
slowly varying in space (Fig. 5b), therefore, the spline
approximation between points on the scale set by the
electrode grid is reasonable. On the other hand, for basal
stimulation, we observe fine-grained activity, i.e., activity at

spatial scales smaller than the grid spacing (Fig. 5c), and
the spline-based approximation is, as expected, less able to
account for the actual activity. In the case with one central
column the optimal h is 0.1–0.3 mm; this translates to an
assumed thickness of CSD distribution 2h of 0.2–0.6 mm,
which is close to the diameter of the cylinder containing the
somas used in the simulation.

If we now consider the configuration with lateral
sources, the situation depends on whether the grid is placed
in the orthogonal plane (Fig. 6a) or aligns with the new
columns (Fig. 6b). In the first case (Fig. 6a), the optimal
h grows slightly, which is the effect of increasing size of the
sources perpendicularly to the grid In the latter case
(Fig. 6b), the optimal h changes very little with the addition
of new columns. This is consistent with the constant extent
of the sources in the direction perpendicular to the grid.
The dependence of reconstruction error on h is more
pronounced in the case of apical excitation, but for both
types of stimulation the minimum is obtained for values
close to the size of the source generators. This confirms
our conclusions from the tests on Gaussian sources that
the choice of h should be based on the expected extent of
the activity along the axis orthogonal to the grid. Note also
that for the setup shown in Fig. 6b, where the electrode
grid is slightly off-center, the errors for the single central
column are higher than for the setup shown in Fig. 6a.
This is because the CSD distribution assumed in our iCSD
scheme is symmetrical in the axis perpendicular to the
grid. Indeed, the LFP generated by any CSD distribution is
equal to that generated by a distribution symmetrized with
respect to the plane of the electrodes. The recorded LFP
will be the same whether all the CSD is ‘behind’ or ‘in
front of’ the electrode grid, or shared in any fraction
between the two sides. Therefore, for any data set, we can
only hope to reconstruct the symmetrized part of the CSD,
unless there is additional anatomical or physiological
information indicating specific asymmetry, which can then
be included in the method explicitly.

Fig. 5 Placement of the simulated population of 1000 layer-5
pyramidal neurons a. All somas are contained within the cylinder.
Three example neurons are shown. Panels b and d show the actual

CSD generated by the population stimulated apically (b) or basally (d)
(excitatory synaptic input). c, e: reconstruction of the CSD with spline
iCSD method, boundary conditions D, h=0.2 mm
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We also calculated the reconstruction errors for the CSD
estimated using the traditional method for the situations
depicted in Fig. 6. Typically, the errors of the traditional
method are slightly higher than in the inverse method for
the best choice of h. For example, the errors for the
configuration shown in Fig. 6a and apical excitation
(Fig. 6c) are 13.0%, 11.7%, and 11.2% for a single column,
two columns, and three columns, respectively. One situa-
tion where the traditional method gives significantly higher
errors is when there is activity at the boundary of the grid
(Fig. 6b, lowermost of the three columns). For three active
columns (circles in Fig. 6d) the error of the reconstruction
obtained with the traditional method is as high as 19.6%.
These findings are compatible with the results for Gaussian
sources, where there was always significant activity at the
boundary. Thus, in this case we see that the main benefit of
using iCSD instead of traditional approach is significant
gain of precision at the boundaries.

Selection of h

The parameter h is the main a priori unknown parameter
specifying the 2D iCSD method, and the choice of h is,
therefore, an important issue in practical applications.
Optimally, h should be chosen based on the expected
extent of neural activity, known anatomy, or the results of
forward modeling studies according to the expected size of
a typical active population.

As seen in Figs. 4 and 6 the assumed activity depth
influences the estimation error. However, in these examples
the estimation errors seem to converge towards a constant
value above h=1 mm, which corresponds to an assumed
activity depth 2 h of 2 mm. This is particularly visible for
the case of basal stimulation. This reflects that the 2D iCSD
estimator itself approaches a fixed ‘large-h’ form when
h becomes large enough. It is shown in the Appendix that
the typical large-h transition value depends on the geometry
of the multielectrode, in particular the distance between
recording grid points. This large-h transition value is
potentially of practical importance: in a system where neural
activity is more widespread than this value in the direction
orthogonal to the 2D grid, the ‘large-h’ 2D iCSD method can
be used and the uncertainty due to lack of knowledge of the

true effective value of h will be minimal. The large-h limit of
the 2D iCSD method is studied in the Appendix.

Analysis of Experimental Data

To test the utility of the proposed method in analysis of real
data we applied it to the set of simultaneous recordings
obtained in the rat subiculum using an 8 by 8 multielectrode,
as outlined in the “Materials and Methods” section. We
assumed h=0.5 mm and Gaussian profile of H(z).
Figure 7a–h compares the reconstructed current-sources
using the iCSD 2D with D boundary conditions (marked
2D iCSD) with the interpolated averaged potentials in time
from the stimulation. The interpolated data were super-
imposed on top of anatomical borders (Fig. 7i) according to
the histology (Fig. 2).

A paper centred on a large 2D data set will be submitted
elsewhere, hence, we provide here a basic interpretation of the
present responses. Alvear activation evokes an antidromic
subicular population spike (SUBp, peaks at 1.7 ms) across the
full extent of the subicular cell layer (Menendez de la Prida
2003). The main SUBp sink back-propagates across the cell
layer towards the molecular layer (1.7–2.1 ms sequence), then
‘splits’ and finally fades away slowly (from 2.5–3.8 ms; along
SUBp/SUBm). We interpret this ‘split’ as feed-forward
activation from antidromically-activated subicular pyramids
that project laterally (but perhaps not to the middle of SUB)
with the likely recruitment of local inhibitory cells (Harris et
al. 2001). A strengthening of the main split pattern and a
reversal of the activity at SUB/PrS border (and PrS) likely
reflects feed-back inhibition of SUBp, producing an ‘inhibi-
tory’ source and ‘passive’ sink. After back-propagation the
region lying along the ‘split’ has very little synaptic activity,
suggesting that the proposed feedback mechanisms on either
side of this region are not active here.

Figure 8 shows the CSD reconstructed using different
h in the iCSD method (0.05 mm, 0.5 mm, and 3.2 mm
respectively in Fig. 8a–c) and using the traditional method
(Fig. 8d). To obtain the values at the boundary layer in the
traditional CSD reconstruction we used the 2D analog of
the Vaknin procedure. The shapes recovered using these
methods are very similar. If we use h=0.5 mm as reference
the errors e2 of the four plots are 3.3%, 0%, 0.8%, and
2.4%. The largest difference is in the amplitude of the CSD,
which is 263, 133, 126, and 77 for Fig. 8a–d, respectively
(arbitrary units). This example shows that in some cases
traditional CSD and iCSD may lead to equivalent results.
We expect this to happen especially when there is little
activity close to the edges, or when the inter-electrode
distance is large compared to the spatial scale of activity
(here we have sinks and sources separated by just 0.2 mm,
that is, one inter-contact distance). The latter claim is
supported by tests similar to the ones shown in Fig. 3, but

Fig. 6 Reconstruction fidelity of model CSD data for different
placements of sources and recording grid. a, b: top-view of the grid
of electrodes (x′s) and cylinders containing somas of the simulated
layer-5 pyramidal cells (circles). The two setups a and b differ in the
placement of the electrode grid with respect to the axis going through
centers of three columns. Note that in the setup b the electrode grid is
slightly off-center, which allows the impact of such placement on the
reconstruction error to be estimated. c–f: reconstruction error of the
whole time-course of CSD for varying number of active columns and
h. c and e correspond to setup a, d and f correspond to setup b. c and
d: apical excitatory stimulation, e and f: basal excitatory stimulation

�
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with longer and more narrow sources, resembling the
experimental activity shown in Fig. 8 (test data not shown).
In this case we also obtained reconstruction errors on the
order of 9% for the spline iCSD variants (B and D) only
mildly better than for the traditional method (e2 =10%) with
the difference between the iCSD and traditional method
around 6%.

Discussion

Among the many techniques available for the study of
information processing in the brain, electrophysiology
stands out when it comes to temporal resolution of the
signal. Some obstacles in its use are (a) the technical
problems of simultaneous signal recording at multiple sites

Fig. 8 Reconstruction of CSD from experimental data (t=1.7 ms after
stimulation). Three reconstructions with the iCSD method (spline,
Gaussian z-profile) with different assumed h (a–c) and the traditional

method with Vaknin procedure (d) give similar shapes of the CSD. The
predicted amplitudes are different (see text), each plot is rescaled using
the amplitude of the CSD to facilitate comparison of the shape

Fig. 7 Laminar profile of network activity in rat subiculum. Panels a–
h: interpolated data from 8×8 MEA recording grid (1.6×1.6 mm) in
dorsal subiculum (iCSD at left, potential at right). Insets in the left
panels show post-stimulus time for each frame. Black bar in a shows
1 mm scale. Anatomical borders are indicated in i with matched
average potentials (red box) shown in j (scale bar: 1 mV/15 ms; w.m.
white matter; data shown 15 ms post-stimulus). In a–d single-pulse
alvear stimulation (* in i) produces a peak negative voltage (red)

across the subicular cell layer (SUBp; panel a voltage) with bordering
negativity (molecular layer (SUBm) and basal dendrites) that moves
over time to the SUBp/SUBm border. There are also smaller positive–
negative responses in presubiculum (PrS) and in the border region
between PrS and Sub. This pattern is also reflected in the 2D iCSD
patterns as sinks (red) and sources (blue). In c–h the main SUB
pattern appears to ‘split’ around a central quiescent zone, fade (d–e)
and then strengthen again (f–g) before fading slowly
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and (b) the large spatial range of electric fields measurable
with these electrodes. It is now feasible to implant around a
hundred electrodes within a relatively small brain volume
to record signals simultaneously, allowing for remarkable
spatial and temporal resolution. The amount of information
coming from such experiments, matched with adequate
analytical tools, are used for precise identification of single
units (Buzsáki 2004), brain machine interfacing (Nicolelis
2001) and in studies of LFPs for a precise description of
population activity of neural structures and spatial locali-
zation of synaptic connections.

Although a remarkable spatial resolution in recorded
potentials is achievable with modern multielectrodes, this
does not automatically afford a correspondingly high spatial
resolution in the estimated neural activity due to the
inherent long-range properties of LFPs. The Inverse
Current Source Density method proposed in Pettersen et
al. (2006) for laminar 1D recordings, developed by Łęski et
al. (2007) for 3D data and here for 2D grids, allows more
robust reconstruction of the sources and sinks generating
the measured LFPs than previous methods. One specific
advantage, particularly important in 2D (and in 3D), is that
the iCSD method appears to recover the CSD close to the
boundary of the electrode-contact grid more accurately than
the traditional CSD method. With the increasing availability
of multi-shank, multi-contact electrodes and microelectrode
arrays there is now a growing need for data analysis
methods to match the sophistication of the sensor hardware.
In this regard, we believe that the 2D variant proposed here,
with its freely available implementation, will find immedi-
ate use in such electrophysiological studies.

Previous Studies of Two-dimensional CSD

The links between CSD and LFPs were discussed in full
three-dimensional generality previously by Nicholson and
co-workers (Nicholson 1973; Nicholson and Freeman
1975; Nicholson and Llinás 1975). Their approach has
been used most frequently, however, for analyses of laminar
recordings in one dimension (e.g. Haberly and Shepherd
1973; Mitzdorf 1985; Schroeder et al. 1992; Ylinen et al.
1995; Lakatos et al. 2005; Lipton et al. 2006; Rajkai et al.
2008; de Solages et al. 2008). There are several studies that
involved the estimation of CSD in two dimensions (Novak
and Wheeler 1989; Shimono et al. 2000; Shimono et al.
2002; Lin et al. 2002; Phongphanphanee et al. 2008).
However, all of these applied the traditional approach
through estimation of the second numerical derivative, and
most applied the specific technique (smoothing followed by
differentiation) proposed by Shimono et al. (2000). The
problem with boundary values was observed by Novak and
Wheeler (1989), who refrained from the analysis of such
edge data. On the other hand, in the papers by Shimono et

al. (2000, 2002), Lin et al. (2002), and Phongphanphanee et
al. (2008), there is no explicit discussion of boundary
treatment.

A notable difference between the standard (numerical
second derivative) and the inverse CSD approaches is that
in iCSD we can specify the parameter h, which translates to
the assumed thickness of the region with sources. The
standard CSD method has an implicit large-h assumption: it
implies that no field escapes in the third dimension (the
double derivative in the Poisson equation is assumed to be
zero in the third dimension). Although the 2D iCSD
methods require an explicit assumption of h which is not
always easy to justify, it is better to have this assumption
explicit than forcing a large-h assumption, which is done
implicitly in the standard CSD method.

We should stress that we do not want to imply here that
the traditional CSD approach is invalid or should be
abandoned, as it is simple to apply and in many cases
may lead to reasonable estimates of CSD (see our
experimental example). However, from the general view-
point presented here, we believe 2D iCSD is better
grounded. Indeed, we are convinced that the framework
of 2D iCSD offers a viable and meaningful alternative,
which can be further extended to incorporate additional
physiological knowledge as it becomes available.

Main Results

In this article we have developed several variants of the
iCSD 2D. The basic difference between them comes from
the assumed structure of the CSD: either constant within
boxes or interpolated (linear or spline) between the points
of an electrode grid. To accommodate sources located
outside the probed region one can expand the grid spanning
the CSD (Fig. 1). The CSD at these extra points can be set
to duplicate the values from neighboring points or
alternatively set to zero. Our tests on several surrogate data
sets, including Gaussian sources of different spatial struc-
ture (Fig. 3) and extracellular potentials generated from a
model population of 1000 pyramidal cells (Fig. 5), indicate
that the optimal approach is the spline interpolated iCSD on
an extended grid with duplicated boundaries.

The main free parameter is the assumed width of the
sources perpendicular to the multielectrode grid, h. Tests on
model data indicate that the performance is best when h is
in the order of the actual size of the current sources. Thus, it
is beneficial to estimate h from anatomical studies of the
target region. However, reasonable deviations from the best
choice of h deteriorate the profile of the reconstructed
sources only very slightly. We also observed stabilization of
the error values for the normalized CSD with growing h,
which corresponds to assuming infinite extent of sources in
the direction perpendicular to the grid. For the cortical
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pyramid model (Fig. 5) such stability was reached at about
h=1 mm (i.e., assumed width of 2 mm) for our multielec-
trode with a grid-spacing of 0.2 mm. This error stabilization
reflects convergence of the 2D iCSD method in the large-
h limit. This convergence is independent of the neural
sources and only depends on the geometry of the grid-
points of the multielectrode. Thus, for a given spatial
extension of neural activity in the direction orthogonal to
the 2D grid, the large-h limit can, in principle, be reached
by reducing the distance between grid points in the 2D
multielectrode. In many real biological applications, one
may already be at this large-h limit. In such situations, one
may simply choose a sufficiently large h when constructing
the iCSD estimator. In case of very limited information on
the possible extent and distribution of the sources, we
recommend experimenting with several different values of
h and looking for features appearing stably across the
different iCSD reconstructions.

To test our method in practice we applied it to a set of
recordings from rat subiculum (Figs. 2, 7). Compared with
the interpolated potentials, iCSD plots provide more precise
localization of neural activity in subiculum following alvear
stimulation. The observed activity pattern points to the
heterogeneous structure of connections in the subiculum

and supports the columnar anatomical model proposed by
Harris et al. (2001).

Graphical User Interface Tool for CSD Analysis

As supplementary material we provide a MATLAB toolbox
containing the scripts used in our analysis together with a
simple GUI (Fig. 9), allowing easy calculation of different
variants of iCSD from voltage data recorded on 2D regular
grids. The viewer is bundled with three of the datasets used
in the paper: two model datasets (apical and basal
excitatory input to a population of pyramidal cells), and
one experimental (data recorded in the rat subiculum). It is
also possible to import and analyze user data provided as a
workspace variable or an array stored in a MAT file. The
viewer makes it straightforward to switch between tradi-
tional CSD and different variants of inverse CSD, to adjust
boundary conditions, and to test different values of the
h parameter in case of iCSD. The resulting figures can be
exported as PNG files.

The software and the data can be used freely in research
provided this paper is cited in any material using the results
of their application. The toolbox is provided under GNU
General Public License version 3 or later and is available

Fig. 9 Graphical tool for CSD
analysis. The main window
shows details of the dataset, the
CSD method, two panels with
voltage and CSD data, and con-
trols for browsing through the
dataset
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from the INCF software repository, http://software.incf.org/,
where a toolbox for iCSD analysis of 1D linear recordings,
CSDplotter (Pettersen et al. 2006), can also be found.

Future Developments

Inverse Current Source Density developed in one (Pettersen
et al. 2006), two (here), and three dimensions (Łęski et al.
2007) is a flexible framework that allows us to incorporate
different assumptions about the distribution of sources or
the geometry of probed structures. So far, however, it has
been developed only on regular grids with the assumption
of uniform and homogeneous tissue conductivity. Conduc-
tivity in any structure is neither completely homogeneous
nor uniform (see for example recent measurements reported
in Logothetis et al. 2007 or a study of conductivity in the
rat barrel cortex, Goto et al. 2010), therefore, one way of
developing the method would be to consider inhomoge-
neous or anisotropic media. Equation 1a then becomes
rðsrΦÞ ¼ �C, where σ is a tensor which can take
different values at different spatial positions. The solution
to this equation would then be used to construct the forward
model matrix F. The generic situation can only be treated
by solving the equation numerically, but in several
important cases the solution can be given explicitly. For
instance, if σ is constant in space then one can always rotate
the Cartesian coordinate system so that σ becomes a
diagonal matrix: σ=diag(σx ,σy ,σz). Then the solution Φ
for the unit source located at the origin is

Φðx; y; zÞ ¼ 1

4p
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2sysz þ y2sxsz þ z2sxsy

p :

Also some important cases of inhomogeneity can be solved
analytically. One such case is conductivity that is constant
within planar layers but has different value in each layer (Gold
et al. 2006; López-Aguado et al. 2001), then the method of
images can be used to express the solution Φ as a series.

Another way of generalizing the method would be to
consider arbitrary distributions of recording points. This
seems to be of immediate use, as it is becoming
increasingly easy to insert large numbers of independent
electrodes probing large volumes of the brain, but not
necessarily on regular grids. This will be an object of our
further study. Until now we have assumed that the grid
spanning the CSD is the same as the electrode grid. This
need not necessarily be so and one could consider electrode
arrays with differing geometries, e.g., electrode contacts not
forming an exact straight line (Barthó et al. 2004).

An important topic we have only briefly covered in the
present work is the stability of the results with respect to noise
(see the Appendix). The current-source density analysis
requires us to calculate—explicitly in ‘classical’ CSD and

implicitly in iCSD—the spatial derivative of the potential.
This leads to amplification of noise present in the signals, see
detailed analysis in (Freeman 1980) in the context of ECoG.
The thorough study of the influence of different sources of
noise (measurement noise, uncertainty in the electrodes’
positions, etc.) is beyond the scope of this paper. However,
the analysis of the condition number of the matrix F for
different iCSD variants (step, linear, spline) suggests that there
is a tradeoff between how well a given method resolves the
shape of the sources and how stable it is with respect to noise.

It would be useful to establish general range of
applicability of the proposed methods. Unfortunately, to
make general statements regarding the optimality or
stability of the iCSD method one would have to know the
class of possible distributions of fields in the brain, which is
not available. This is why we tested the quality of different
methods used for CSD estimation on both artificial test data
and simulated data from synaptically activated populations
of biophysically detailed neuron models with reconstructed
morphologies. As illustrated by Fig. 5b and d the ground
truth (“true CSD”) is quite “noisy” in the sense that it varies
from pixel to pixel. Nevertheless, for all situations
encountered we found both the spline-iCSD and linear-
iCSD methods to be stable in the sense that it gave results
in good agreement with the know ground truth (see, e.g.,
Fig. 5c and e). In addition, we found no signs of instability
when applying our method to the experimental test data. We
only encountered instability in predictions in test cases where
the current sources were positioned far away from the
recording grid, which resemble situation in the EEG or ECoG
source estimation (not shown). Such situations might require
use of more involved approaches but they are not our goal: we
are interested in estimating sources close the recording grid
within the same plane. It would be interesting to see howmore
involved approaches from EEG or ECoG source localization
would perform in this context (He and Lian 2005; Nunez and
Srinivasan 2006). Also, it would be interesting what one
could achieve in the context of CSD estimation using
Bayesian techniques, which allow to incorporate the prior
knowledge (e.g. anatomical) in a natural way (Baillet and
Garnero 1997; Schmidt et al. 1999).

Information Sharing Statement

The toolbox for CSD analysis in 2D is publicly available
from the INCF software repository, http://software.incf.org/
(project name iCSD 2D). The toolbox consists of MATLAB
scripts, a GUI viewer, and three example data sets. The
software and the data can be used freely in research
provided this paper is cited in any material using the results
of their application. The supplementary video is available at
http://www.youtube.com/icsd2d and can be used freely in
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Appendix

Here we construct the F matrix for the linear and spline
interpolation of CSD between the nodes of rectangular two-
dimensional grid. We assume that CSD has product
structure, i.e.

C x; y; zð Þ ¼ c x; yð ÞHðzÞ;

where H(z) is a step function (a generalization to the
Gaussian profile is straightforward and we omit it here).

Consider a grid of points (i,j), where 1≤ i≤nx, 1≤ j≤ny .
The spacing of the grid is Δx and Δy in x and y directions,
respectively. Let us number the points with a multi-index
α=(i,j). The coordinates of node α are (xα, yα). Let V be
the set of 4 vectors (v1, v2), each of vi being either 0 or 1.
The grid has N=nx ny nodes and there are m=(nx -1)(ny -1)
boxes spanned by these nodes. We index the boxes so that
the corners of the box number α are α+v for v∈V. Let B

denote the set of all the allowed indices α numbering the
boxes and G stand for all the grid points. Let C denote the
vector of CSD values at the nodes, that is Cα=c(xα, yα) for
α∈G.

Linear Interpolation

Here we assume linearly interpolation of CSD between
the box corners. Take a point (x,y) in box number α and
let dx ¼ x�xa

Δx , dy ¼ y�ya
Δy . The value of CSD at this point

obtained with the linear interpolation is given by:

cðx; yÞ ¼
X
v2V

1� v1 þ ð2v1 � 1Þdx½ � 1� v2 þ ð2v2 � 1Þdy½ �Caþv:

Therefore, the distribution inside the box is a linear
combination of 4 functions fl, l=1…4: f1(δx, δy)=1, f2(δx, δ
y)=δx, f3(δx, δy)=δy, f4(δx, δy)=δxδy with coefficients
depending linearly on the values of C at the nodes of the
box:

cðx; yÞ ¼
X
b2G

X4
l¼1

El
abflCb:

The coefficients El
ab are non-zero only for β-α∈V and

follow from the above formula, e.g. E1
ab ¼ 1for β-α=(0,0),

otherwise E1
ab ¼ 0, etc.; conf. Łęski et al. 2007. The

potential generated by such a distribution of current-
source density at some point ðex;eyÞ is
Φðex;eyÞ ¼X

a2B

X
b2G

X4
l¼1

Fl
aðex;eyÞEl

abCb;

where

Fl
aðex;eyÞ ¼ 1

4ps

Zh
�h

dz

ZΔy

0

dy

ZΔx

0

dx
fl x

Δx ;
y
Δy

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðex� xa � xÞ2 þ ðey� ya � yÞ2 þ ðza þ zÞ2

q :

The integral over z can be explicitly calculated to give

Fl
aðex;eyÞ ¼ 1

2ps

ZΔy

0

dy

ZΔx

0

dx fl
x

Δx
;
y

Δy

� �
ar sinh

h

L
;

L standing for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðex� xa � xÞ2 þ ðey� ya � yÞ2

q
. If we

now take as ðex;eyÞ one of the grid points γ then
Φg ¼

P
b2G

FgbCb, where Fgb ¼
P
a2B

P4
l¼1

P
Fl
aðxg ; ygÞEl

ab:

Thus Fγβ represents the direct and indirect contributions
to the total potential at point γ from the CSD associated
with the grid point β.

Spline interpolation

The construction of the F matrix for the spline distribution
is, in principle, very similar to the linear case. Now the
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interpolating function in each box is the two-dimensional
cubic spline. This means there are 4×4=16 base functions.
Therefore, there are 16 El and Fl matrices. It is sufficient to
consider spline interpolation on a quadratic grid with unit
spacing in both directions. The correct formulae for inverse
CSD on a general rectangular grid are then easily obtained
by changing the variables from (x,y) to (x/Δx, y/Δy).

Let us first recall the construction of one-dimensional
spline. Suppose we have values of a function f at points x=
1, 2, … nx. For x such that j≤x≤j+1 define P1(x)= j+1-x,
P2(x)=x-j. The formula

f ðxÞ ¼ P1ðxÞf ðjÞ þ P2ðxÞf jþ 1ð Þ ð16Þ

gives a linear interpolation between the grid points, that
means interpolation with a continuous function. In case of
cubic splines we need the first and second derivatives to be
continuous. This is accomplished (Press et al. 1992) by
replacing the right hand side of Eq. 16 with a third-degree
polynomial:

f ðxÞ ¼ P1ðxÞf ðjÞ þ P2ðxÞf jþ 1ð Þ þ P3ðxÞf 00ðjÞ
þ P4ðxÞf 00 jþ 1ð Þ ð17Þ

where P3ðxÞ ¼ P1ðxÞ3�P1ðxÞ
� �

=6;P4ðxÞ ¼ P2ðxÞ3�P2ðxÞ
� �

=6.
This formula guarantees that both f and its second derivative
are continuous. The condition that the first derivative is
continuous allows us to obtain the values of f ′′ at the nodes
from f(j), j=1, …, nx, by a linear operation which we call G:

f 00ðiÞ ¼
Xnx
j¼1

Gijf ðjÞ:

The matrix G is different for “natural” and “not-a-knot”
splines (see Łęski et al. 2007), which assume different

conditions for the first derivative of f at the boundaries
(only the latter are implemented in MATLAB without a
dedicated spline toolbox).

The two-dimensional spline interpolation is obtained
by simply performing two, one-dimensional splines.
The complication is that we do not want the values of
the interpolating function at some points, but the
coefficients standing by the base functions. We found
that it is convenient to choose base functions which are
products of the polynomials P1, P2, P3, P4 of variables x
and y, that means P1(x)P1(y), P1(x)P2(y), … P4(x)P4(y).
To extract the coefficients we start with the spline in y
direction:

f ðx; yÞ ¼ P1ðyÞf ðx; jÞ þ P2ðyÞf ðx; jþ 1Þ þ P3ðyÞf yyðx; jÞ
þ P4ðyÞf yyðx; jþ 1Þ;

where fyy stands for the second derivative of f with respect to

y and is given by f yyðx; jÞ ¼
Pny
i¼1

Gy
ji f ðx; iÞ. Therefore, we

reduce the problem to one-dimensional splines in the x axis.
We continue with

f ðx; jÞ ¼ P1ðxÞf ði; jÞ þ P2ðxÞf ðiþ 1; jÞ þ P3ðxÞf xxði; jÞ
þ P4ðxÞf xxðiþ 1; jÞ:

This way we get the coefficients standing by the base
functions as combinations of f(i,j) (values of f at the nodes)
and the matrices Gx, Gy. Then we construct the matrices
Epq
ab, α∈B, β∈G, 1≤p,q≤4. The number Epq

ab is the coefficient
standing by Pp(x)Pq(y) in box α resulting from a unit CSD
at the node β. The construction of 16 Fpq

ga matrices (each of
size n by m), where γ∈G and α∈B, is simple (note the
arguments of Pi are scaled by grid constants due to general
rectangular geometry):

Fpq
ga ¼ 1

4ps

Zh
�h

dz

ZΔy

0

dy

ZΔx

0

dx
Pp

x
Δx

� 	
Pq

y
Δy

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðex� xa � xÞ2 þ ðey� ya � yÞ2 þ ðza þ zÞ2

q ;

or, after the integral over z is done:

Fpq
ga ¼ 1

2ps

ZΔy

0

dy

ZΔx

0

dx Pp
x

Δx

� �
Pq

y

Δy

� �
ar sinh

h

L
;

with L defined as for linear interpolation. The full matrix F
is now

F ¼
X4
p;q¼1

FpqFpq;
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or

Fgb ¼
X4
p;q¼1

X
a2B

Fpq
ga F

pq
ab:

2D iCSD Method in Large-h Limit

Each variant of the iCSD method is based on inversion of a
matrix F of size P×P, where P is the product of the number
of rows and columns of the 2D electrode grid, P=M×N.
The impact of the different recorded potentials on the CSD
estimated at a given position, Cj, can be found from j-th
row of the inverted matrix F −1. To visualize this impact, the
elements of the row can be mapped back to their spatial
positions and plotted. Figure 10 shows such mappings for
two different iCSD methods and for three different
positions: the linear and the spline iCSD methods for a
central-, an edge-, and a corner element of the 2D electrode
grid. The numbers in these six matrices express the weights
of the electrode-contact potentials in the sum providing the
CSD estimate. In Fig. 10 the 2D iCSD weights in the large-
h limit (h=10 mm, Δx=Δy=0.2 mm) are shown. The
numbers are given as percentages of the estimation-site
weight (impact), i.e., the weight given to the potential
recorded at the grid-point at which the CSD is estimated.

The elements with gray background are studied in more
detail in Fig. 11.

To compare the iCSD with the standard 2D double
derivative formula, consider a plot of the respective
weights, similar to the matrices in the left column of
Fig. 10. If the central element is normalized to 100%, then
only the nearest vertical and horizontal neighbors are non-
zero (and equal to −25%). The standard 2D method would,
therefore, be more compact than the iCSD methods, in the
sense that most weight is placed on the central element and
its nearest neighbors. Similarly, one could see that the linear
iCSD method is more compact than the iCSD spline
method (see further Appendix).

Figure 11 shows the weights relative to their large-
h value. Here, the matrix element at the estimation point is
normalized to the same value as its large-h value. The
darker lines in the plots correspond to the most important
weight elements in the large-h limit, and for most of the
plots, especially those concerning the central element, all
weights are deviating less than 5% for h larger than about
0.5 mm. All plots express convergence as h becomes large,
and for the majority of the plots the weights with highest
impact in the large-h limit express faster convergence than
the less important weight elements.

In Fig. 12, the weight for the estimation point is shown
for the above-mentioned methods and positions. The central
elements (black) express the fastest convergence, the edge

Li
ne

ar
S

pl
in

e

Center element Edge element Corner element

Fig. 10 iCSD weight matrices. The six matrices show how the
different potentials are weighted when estimating the CSD for given
electrode contact positions. The electrode grid is assumed to have a
planar 8×8 configuration with an inter-contact distance of 0.2 mm in
both directions, and the matrices in the large-h limit are shown, i.e. the
CSD perpendicular to the electrode grid is assumed to be homoge-
neous over large distances perpendicular to the electrode grid. The
matrix elements are given in percent relative to the weight assigned to

the potential at the estimation site, i.e., the grid point at which the
CSD is estimated. Different iCSD methods are shown in the two rows:
linear (row 1) and spline (row 2). Horizontally, different estimation
points are shown, a central element (i=j=4), an edge element (i=4 and
j=1) and a corner element (i=j=1). The depth parameter h has been
set to 10 mm. Elements with gray background are studied in more
detail in Fig. 11
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elements (gray) express convergence that is almost as fast
and the corner elements (light gray) express the slowest
convergence. However, both for the central-, edge- and
corner element, 95% of the maximum value is reached for

h less than about 0.4 mm. For h=1 mm, both the central
and the edge elements are indistinguishable from 1, while
the corner elements are larger than 98% of their large-
h value.

The results presented in Figs. 10, 11 and 12 scale with
the inter-contact distance. Here, an inter-contact distance
of 0.2 mm is used. However, with a grid shrunken by a
factor of two with an inter-contact distance of 0.1 mm, the
transition to the large-h limit would occur at half the above
value, and only half the activity depth would be needed to
allow for use of the large-h limit version of the iCSD
method.

Compactness of Methods

Consider a weight matrix similar to the matrices shown in
Fig. 11. For each element (electrode contact position) one
can define an impact radius, ρij, as

rij ¼
XN
k¼1

XN
l¼1

wklrklj j
 !

= wij

�� ��; ð18Þ

where wkl are the elements of the weight matrix and the
denominator ensures that the weight matrix is normalized
to 1 (shown as 100% in Fig. 11). rkl is the distance from
the estimation point to the corresponding electrode
contact, rkl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔxðk � iÞÞ2 þ ðΔyðl � jÞÞ2

q
. The impact
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Fig. 11 Illustration of h-dependence of relative weight of elements in
iCSD weight matrices of the type shown in Fig. 10. The curves are
obtained by calculating the relative weight of the off-center elements
compared to the weight at the estimation-site (the site given the value
100 in Fig. 10) for each value of h. Then these sets of relative weights
are normalized to give the value 1 in the large-h limit. The electrode
grid is assumed to consist of 8×8 electrode contacts with an inter-

contact distance of 0.2 mm in both directions. Left column: deviation
for a central element (i=j=4). Middle column: deviation for an edge
element (i=4 and j=1). Right column: deviations for a corner element
(i= j=1). The gray shade of the lines reflects the elements’ impact in
the large-h limit, see scale bar to the right and element impacts in
Fig. 10. Note that due to symmetry some of the lines are overwritten.
The horizontal dashed lines indicate plus/minus ±5% deviation
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Fig. 12 The relative weight of the estimation sites for the three points
(corner, edge, center) in Fig. 10 relative to the weight at the same
estimation site in the large-h limit, as a function of the depth parameter
h. The grid parameters and iCSD methods are the same as in Figs. 10
and 11. The horizontal dashed line indicates 95% of the maximum
amplitude, which was reached for values of h between 0.22 mm and
0.41 mm
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radius can be computed for all elements in the N×N matrix,
and the mean impact radius can be computed for the method
by averaging over all elements ρij. Figure 13 shows plots of
the mean impact radius for the linear and spline iCSD
methods for N×N electrode grids of different sizes N and
with an assumed inter-contact distance of 0.1 mm. For up to
16×16 electrode contacts, the mean impact radius is typically
between 0.2 mm and 0.3 mm, while the standard 2D double
derivative formula would give an impact radius of 0.1 mm
for all central elements.

Condition Number of the F Matrix with Respect
to Inversion

The inverse CSD method relies on an inversion of the
forward solution. An important question in this context is
how sensitive this system of equations is to changes in
the data (for example errors or noise). While the full
analysis for all possible sources of noise (measurement
noise, displaced electrode contacts, etc.) is outside of the
scope of this work, one simple measure of this property
is the condition number of the matrix F. This number is
defined as the ratio of the largest singular value of F to the
smallest. Figure 14 presents the condition number in case
of 10×10 electrode grid, Δx=Δy=0.2 mm, as a function
of h for different iCSD variants (spline, linear, step). Two
facts are noteworthy: first, for increasing h the condition
number increases. This is compatible with the fact that
small h means more local estimation of current-source
density, whereas large h means that also values of
potential at distant nodes play a role in estimation.
Second, the spline method yields the largest condition
number for a given h, the condition number for step iCSD
is the smallest, and the linear iCSD lies in between. This is
because the CSD values at the nodes influence the CSD
distribution differently for step, linear and spline inter-
polations. For step iCSD, only the immediate neighbor-
hood is affected, for linear iCSD this area is larger, and the
spline coefficients are global, i.e., a change in CSD at a
single node deforms slightly the whole distribution. This
fact is also compatible with the calculations of the
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Fig. 13 Quantification of mean impact radius of the linear and spline
iCSD methods in the large-h limit. The mean impact radius is defined
in Eq. 18 and is found to be in the range 0.2–0.3 mm for differently
sized electrode grids with inter-contact distances of 0.1 mm

Fig. 14 Condition number
of the matrix F as a function
of h for step, linear and spline
iCSD. The grid used here
is 10 by 10 electrodes,
Δx=Δy=0.2 mm
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compactness of the methods: as we have shown above the
spline method has larger impact radius than the linear
iCSD.

Parameters of Gaussian Sources

The three-dimensional Gaussian sources used for tests of
the iCSD method were given by:

Cðx; y; zÞ ¼
X

A exp � x� x0ð Þ2 þ y� y0ð Þ2
� �

=sxy

h i exp � z� z0ð Þ2=sz

h i
exp � z0ð Þ2=sz

h i :

For some of the tests we used product sources c(x,y)H(z),
with

c x; yð Þ ¼ C x; y; 0ð Þ:

The parameters of the sources are given in Table 1.
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