Inverse Current Source Density method in two dimensions:
Inferring neural activation from multielectrode recordings

Supplementary material

Szymon lLeski, Klas H. Pettersen, Beth Tunstall,
Gaute T. Einevoll, John Gigg, Daniel K. Wojcik

March 4, 2011

The Inverse CSD method in two dimensions is implemented as a set of MAT-
LAB scripts. The scripts were tested on MATLAB 7.4.0 (R2007a).

The scripts are published under the GNU General Public License. You can
use, redistribute and/or modify them under the terms of the GNU General Public
License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

If you use these scripts, please cite the article “Inverse Current Source Den-
sity method in two dimensions: Inferring neural activation from multielectrode
recordings” (Neuroinformatics, 2011, doi:10.1007/s12021-011-9111-4).

1 Using the 2D iCSD tool

Together with the MATLAB scripts (described below) we provide a graphical
viewer and three datasets (two model datasets — apical and basal excitatory
input to a population of pyramidal cells, and one experimental — data recorded
in the rat subiculum, see the paper for details). To prepare the datasets and
launch the graphical viewer, run RUNME . m (later you can use iCSD2Dtool.m
— this skips some steps which are only needed when the tool is run for the first
time). You can choose one of the three provided datasets or create a new one
using a workspace variable or an array stored in a MAT file (the format of the
array is described below in Section 2). The viewer allows you to view potentials
and CSD, choose between traditional CSD and different variants of inverse CSD,
to adjust boundary conditions, and to try different values of the h parameter in
case of iCSD. The resulting figures can be saved to a PNG file.



2 Using the MATLAB scripts

The first step is to calculate the appropriate matrix F. This is done using the
scripts initstep2d.m, initlin2d.mand initspline2d.m, which assume
nearest neighbor, linear or spline interpolation between the nodes, respectively.
The results are saved to a .mat file in subdirectory data, hence they must be
calculated only once. These scripts are invoked as

initlin2d('name', nx, ny, dx, dy, h)
initlin2d('name', nx, ny, dx, dy, h, dsp)
initlin2d('name', nx, ny, dx, dy, h, zprofile)
initlin2d('name', nx, ny, dx, dy, h, zprofile, dsp)

similarly for the other two variants. The first input argument, 'name’', is the
name of the file in which the results will be saved. The next four arguments
describe the geometry of rectangular grid. If no optional argument dsp is given,
then this is both the grid of electrodes and the grid spanning the CSD distribution.
If the electrode grid is not exactly rectangular (or should be different from CSD
grid for any other reason), then the geometry of the electrode grid can be specified
in dsp. Note that the CSD grid will still be the rectangular grid given by nx,
ny, dx, dy. The argument h is related to the spread of the CSD distribution in z
direction. CSD distribution is specified using the optional argument zprofile,
which may be 'step' (default) or 'gauss'. Use help initlin2d for more
information (and similarly for all other scripts described here).

The “traditional” CSD (finite-difference approximation of two-dimensional
Laplacian) is also implemented similarly. Here the syntax is

Finv = inittrad2d(nx, ny, dx, dy)

where the input arguments specify the geometry of the rectangular electrode grid.
The output is not the matrix F' (which is not well defined) but the differentation
operator which is analogous to F~!. If the fifth argument 'vaknin' is given,
then the matrix Finv implements also the Vaknin procedure for obtaining CSD
at the boundary.

The next step is to prepare the input data (potentials) in suitable format.
The data should be given as a 3-D array of size [nt, nx, ny], where nt is
the number of time frames. (The array should be 3-D even if only one time frame
is present.) Then the CSD at the nodes of the rectangular grid can be calculated
using
csd = icsd2d(potentials, F);

csd icsd2d (potentials, F, boundary);
csd = icsd2d(potentials, Finv, 'trad');

The first form (with two arguments) is used when the assumption is that CSD
is non-zero only within the CSD grid (in xy-plane). The second form has to
be used when one wants special treatment of boundary data, i.e. assumption of
an additional layer of nodes with either zeros (boundary = 'B'") or duplicated

2



values (boundary = 'D'). In that case the matrix F has to be for appropriately
larger grid (nx+2 by ny+2). The third form of invoking icsd2d.m is used for
traditional CSD (with or without Vaknin procedure).

The last step is to interpolate the CSD values between the nodes. This is
achieved most conveniently with the script interp2d.m, which takes care of all
the subtleties related to special boundary treatment. The syntax is

out interp2d(csd, VX, VY, method);
out = interp2d(csd, VX, VY, method, boundary);

The vectors VX and VY define points at which the interpolated values are calcu-
lated. The values are normalized, i.e. the values in VX take values from 1 to
nx, in VY — from 1 to ny. The argument method specifies which interpolation
method should be used and can be 'step' (nearest neighbor), '1in" (linear),
"splinen' (natural spline) or 'splinem' (not-a-knot spline). The optional
argument boundary may be '"B' or 'D'. Of course, both the interpolation
method and the boundary treatment should be consistent with how the CSD was
calculated!

The scripts: bmatrix2d.m, gmatrix.m, rmatrix2d.m, nsplint2d.m,
parseinpargs.mand espmatrices2d.m are helper scripts and there should
be no need to invoke them directly. Some basic documentation is available as
comments in the respective m-files.

3 Examples

As an example we will calculate the CSD reconstruction from a test set of poten-
tials. These are potentials generated by two-dimensional Gaussian sources (times
a step function in z direction) described in detail in the next section. The 8 x 16
array of potentials can be loaded from file data/example.mat:

load data/example.mat

We will go through all the steps required to caclulate and plot the interpolated
CSD. First we calculate the F' matrix for, say, linear interpolation:

nx = 8;

ny = 16;
dx = 0.2;
dy = 0.1;
h = 0.1;

initlin2d('example_lin', nx, ny, dx, dy, h);

We assumed rectangular 8 x 16 array of electrodes, with spacing of 0.2mm in
x direction and 0.lmm in y direction. The CSD will have product structure: a
linear function of x and y times a step function in z. The step function will be 1
for —0.1 < z < 0.1 and zero otherwise. Once the matrix F' is calculated, we load
it and calculate the CSD:



load data/example_lin.mat F
csdl = icsd2d(potentials, F);

Then we interpolate the CSD:

VX = 1:0.1:nx;

VY = 1:0.1:ny;

csd2 = interp2d(csdl, VX, VY, 'lin');

and plot it:

clims = [—1 1]*max(abs(csd2(:)));

imagesc ((VX—1) xdx, (VY—1)=+dy, squeeze(csd2(l,:,:))', clims);

axis image

This example is available in a script Demo_icsd2d.m.
Another example: the same data, but now the inverse CSD method uses spline
interpolation and different boundary conditions:

initspline2d('example_spline_B', nx+2, ny+2, dx, dy, h);
load data/example_spline_B.mat Fm

csdl_B = icsd2d(potentials, Fm, 'B');

csdl_D icsd2d (potentials, Fm, 'D');

csd2_B = interp2d(csdl, VX, VY, 'splinem', 'B');

csd2_D interp2d(csdl, VX, VY, 'splinem', 'D'");



