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Electroencephalogram (EEG) power spectrum

α

EEG records the activity of ~ 106 pyramidal neurons. 



Population model
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QgjE = f(E) QgjI = f(I)

Qg = f

f = f ({g})
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E = E(gEE, gEI) I = I(gII, gIE)

Steady state
approximation

g = η ∗ f

t0



Alphoid chaos (10 D)
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van Veen and Liley, PRL, 97, 208101 (2006)

Shilnikov saddle-node route to chaos
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Spatially extended models

u(x, t) =

∫∞

−∞
dy w(y)

∫∞

0
ds η(s) f (u(x − y, t − s − |y|/v))

g = u(x, t)

w(|x − y|)

f(u(x, t − |x − y|/v))

x y

g = w⊗ η ∗ f
Simplest neural field model:  Wilson-Cowan (‘72), Amari (‘77)



2D layers
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∑

b

uab

uab = ηab ∗ ψab

ψab(r, t) =

∫

R2

dr ′ wab(r, r ′)fb ◦ hb (r ′, t − |r − r ′|/vab)
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Turing instability analysis

eik·reλt

det (D(k, λ) − I) = 0

Continuous spectrum

E layer and I layer

[D(k, λ)]ab = η̃ab(λ)Gab(k,−iλ)γb

η̃ = LT η G = FLT w(r)δ(t − r/v) γ = f ′(ss)

S Coombes et al., PRE, 76, 05190 (2007)



λ = ν + iω
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FIG. 5: The dispersion surfaces Re λ(k) for fixed parameters: a. d = ∞ (unmodulated model),

v = 4, γ = 5; b. d = 4, v = 4, γ = 15; c. v = 4, d = 2, γ = 20; d. v = 10, d = 4, γ = 50. The values

of γ are chosen so that the homogeneous steady state is just unstable. The peaks in the surfaces

are pinned by the lattice wavevectors ±k1,2, |k1,2| = 2π/d.
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Amplitude Equations (one D)

∂A1

∂τ
= A1(a + b|A1|2 + c〈|A2|2〉) + d

∂2A1

∂ξ2
+

∂A2

∂τ
= A2(a + b|A2|2 + c〈|A1|2〉) + d

∂2A2

∂ξ2
−

Coupled mean-field Ginzburg–Landau equations describing a
Turing–Hopf bifurcation with modulation group velocity of        . O(1)

w ηCoefficients in terms of integral transforms of     and    .

Benjamin–Feir (BF)
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BF-Eckhaus instability
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Time independent localised solutions

w⊗ η ∗ f → w⊗ f

q(x) =

∫

R
dy w(x − y)f ◦ q(y)

x

q(x)

w(x) = (1 − |x|)e−|x|
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Exact result for 1-bump:  f(u) = H(u − h)

q(0) = h = q(∆)

q(x) =

∫∆

0
dy w(x − y)

∆

h

∆e−∆ = h
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Stability
Examine eigenspectrum of the linearization about a solu

Solutions of form satisfyu(x)eλt Lu(x) = u(x)

Lu(x) = η̃(λ)

∫∞

−∞
dy w(x − y)f ′(q(y) − h)u(y)

For Heaviside firing rate

so

f ′(q(x)) =
δ(x)

|q ′(0)|
+

δ(x − ∆)

|q ′(∆)|

u(x) =
η̃(λ)

|w(0) − w(∆)|
[w(x)u(0) + w(x − ∆)u(∆)]



[
u(0)
u(∆)

]
= A(λ)

[
u(0)
u(∆)

]
, A(λ) =

η̃(λ)

|w(0) − w(∆)|

[
w(0) w(∆)
w(∆) w(0)

]

System of linear equations for perturbations at threshold

S Coombes and M R Owen (2004) Evans functions for integral neural field equations with Heaviside 
firing rate function, SIAM Journal on Applied Dynamical Systems, Vol 34, 574-600.

Non trivial solution if

Evans function for integral neural field equation

E(λ) = det(A(λ) − I) = 0

Solutions stable if Re λ <0

Wide bump is stable
∆

h



Predictions of Evans function

M R Owen, C R Laing and S Coombes 2007 Bumps and rings in a two-dimensional neural field: 
splitting and rotational instabilities, New Journal of Physics, Vol 9, 378
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Threshold accommodation
Hill (1936), “... the threshold rises when the local potential is maintained ... and 

reverts gradually to its original value when the nerve is allowed to rest.”

∂h

∂t
= −(h − h0) + κH(u − θ)

One bump (u, h) = (q(x), p(x))

q = w⊗H(q − p) p =

{
h0 q < θ

h0 + κ q ≥ θ

h0

h0 + κ
θ

θ



Bump Stability I:
Low     instability on Re axis (increasing   )
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Bump Stability II
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Summary of Bump instabilities
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Exotic Dynamics
... including asymmetric breathers, multiple bumps, multiple pulses, 
periodic traveling waves, and bump-splitting instabilities that appear 
to lead to spatio-temporal chaos.
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S Coombes and M R Owen: Bumps, breathers and waves in a neural network with spike frequency 
adaptation. PRL, 94, 148102, (2005).



Auto/dispersive solitons as seen in coupled cubic complex Ginzburg-
Landau systems and three component reaction-diffusion systems.

Splitting and scattering



ChatteringRegular spiking

Fast spiking Intrinsically bursting

reset threshold

v

a

v̇ = |v| + I − a

τȧ = −a

Eugene Izhikevich 2008 S Coombes and M Zachariou 2009, in 
Coherent Behavior in Neuronal Networks 
(Ed. Rubin, Josic, Matias, Romo), Springer.
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Further Challenges
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