Neural field models

Steve Coombes

School of Mathematical Sciences

Brain and Cortex

Principal cells and interneurons

Santiago Ramón y Cajal 1900

Eugene Izhikevich 2008

Electroencephalogram (EEG) power spectrum

EEG records the activity of $\sim 10^6$ pyramidal neurons.

Population model

 $E = E(g_{EE}, g_{EI})$ $I = I(g_{II}, g_{IE})$ Steady state approximation

 $Qg = f$ $f = f (\{g\})$ $g = n * f$

Alphoid chaos (10 D)

Spatially extended models $g = w \otimes n * f$

Simplest neural field model: Wilson-Cowan ('72), Amari ('77)

Turing instability analysis

E layer and I layer

$$
e^{i\mathbf{k}\cdot\mathbf{r}}e^{\lambda t}
$$

Continuous spectrum

$$
\mathsf{det}\left(\mathcal{D}(k,\lambda)-I\right)=0
$$

$$
\left[\mathcal{D}(k,\lambda)\right]_{\alpha b}=\widetilde{\eta}_{\alpha b}(\lambda)G_{\alpha b}(k,-i\lambda)\gamma_b
$$

 $\widetilde{\eta} = LT \eta$ G = FLT $w(r)\delta(t - r/v)$ $\gamma = f'(ss)$

S Coombes et al., PRE, **76**, 05190 (2007)

Amplitude Equations (one D)

Coupled mean-field Ginzburg–Landau equations describing a Turing–Hopf bifurcation with modulation group velocity of $O(1)$.

$$
\frac{\partial A_1}{\partial \tau} = A_1(a + b|A_1|^2 + c\langle |A_2|^2 \rangle) + d \frac{\partial^2 A_1}{\partial \xi_+^2}
$$

$$
\frac{\partial A_2}{\partial \tau} = A_2(a + b|A_2|^2 + c\langle |A_1|^2 \rangle) + d \frac{\partial^2 A_2}{\partial \xi_-^2}
$$

Benjamin–Feir (BF)

BF-Eckhaus instability

Coefficients in terms of integral transforms of w and η .

Stability

Examine eigenspectrum of the linearization about a solu Solutions of form $u(x)e^{\lambda t}$ satisfy $Lu(x) = u(x)$

$$
\mathcal{L}u(x) = \widetilde{\eta}(\lambda) \int_{-\infty}^{\infty} dy w(x - y) f'(q(y) - h) u(y)
$$

For Heaviside firing rate

$$
f'(q(x)) = \frac{\delta(x)}{|q'(0)|} + \frac{\delta(x-\Delta)}{|q'(\Delta)|}
$$

so

$$
u(x) = \frac{\widetilde{\eta}(\lambda)}{|w(0) - w(\Delta)|} [w(x)u(0) + w(x - \Delta)u(\Delta)]
$$

System of linear equations for perturbations at threshold

$$
\begin{bmatrix} u(0) \\ u(\Delta) \end{bmatrix} = \mathcal{A}(\lambda) \begin{bmatrix} u(0) \\ u(\Delta) \end{bmatrix}, \qquad \mathcal{A}(\lambda) = \frac{\widetilde{\eta}(\lambda)}{|w(0) - w(\Delta)|} \begin{bmatrix} w(0) & w(\Delta) \\ w(\Delta) & w(0) \end{bmatrix}
$$

Non trivial solution if $\mathcal{E}(\lambda) = \det(\mathcal{A}(\lambda) - I) = 0$

Solutions stable if Re $\lambda < 0$

Evans function for integral neural field equation

S Coombes and M R Owen (2004) Evans functions for integral neural field equations with Heaviside firing rate function, SIAM Journal on Applied Dynamical Systems, Vol 34, 574-600.

Predictions of Evans function

 $time = 2.000$

M R Owen, C R Laing and S Coombes 2007 Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities, New Journal of Physics, Vol 9, 378

Threshold accommodation

Hill (1936), "... the threshold rises when the *local potential* is maintained ... and reverts gradually to its original value when the nerve is allowed to rest."

Bump Stability I: $\eta(t) = \alpha^2 t e^{-\alpha t}$

Low κ instability on Re axis (increasing α)

Bump Stability II High κ instability on Im axis (increasing α) gives a breather

Summary of Bump instabilities

Exotic Dynamics

... including asymmetric breathers, multiple bumps, multiple pulses, periodic traveling waves, and bump-splitting instabilities that appear to lead to spatio-temporal chaos.

S Coombes and M R Owen: Bumps, breathers and waves in a neural network with spike frequency adaptation. PRL, 94, 148102, (2005).

Splitting and scattering

Auto/dispersive solitons as seen in coupled cubic complex Ginzburg-Landau systems and three component reaction-diffusion systems.

S Coombes and M Zachariou 2009, in Coherent Behavior in Neuronal Networks (Ed. Rubin, Josic, Matias, Romo), Springer.

Further Challenges

Default mode network and ultra slow coherent oscillations

Nikola Venkov (Notts)

In collaboration with

Gabriel Lord (Heriot-Watt) Yulia Timofeeva (Warwick)

David Liley (Melbourne)

EPSRC Engineering and Physical Sciences

Markus Owen (Notts)

Ingo Bojak (Nijmegen)

Carlo Laing (Massey, NZ)

