
Kernel Current Source Density Method

Jan Potworowski1, Wit Jakuczun2, Szymon Łęski1, Daniel Wójcik1

1. Nencki Institute of Experimental Biology, Polish Academy of Sciences 2. WLOG Solutions, Warsaw, Poland

1.  Local field potential: local measure of neural activity

Local field potentials (LFPs), the low frequency part of extracellular electric 
potentials, carry information on brain dynamics at the level of neuronal 
populations.

To capture the complete response of a brain region to sensory or electric 
stimulation it is necessary to record the LFPs at many sites simultaneously. 

Long range of the electric field in the tissue implies that every source of electric 
activity (concerted trans-membrane currents) may be visible in recordings at 
many sites. This complicates the analysis of electrophysiological data.

To study the pattern of activation in complex brain structures it is often of 
advantage to reconstruct the current source density (CSD), the volume density 
of net transmembrane currents generating the LFP. Methods for inference of 
CSD from LFPs are called in neuroscience Current Source Density methods. 

Data: J. Gigg, B. Tunstall

2. Can we reconstruct CSD from arbitrary distribution of 
contacts?

In the last few years we have witnessed rapid development of technology for 
large scale electrical recordings. Various types of multi-electrodes were devised.

Barthó et al. 
(2004)

Previous CSD inference methods usually required arrangement of electrodes on 
a regular, rectangular grid. We need a method that will work independent from 
this assumption. 

Ayanda International

NeuroNexus 
Technologies

We assume CSD from n–dimensional 
linear space (think n very large) 
defined through the basis:

3. Apply kernel methods

Therefore we obtain the space of 
possible potential distributions f: 

where 

Given k observation points
the kCSD method returns the 
'smoothest' CSD function in    that 
generates the observed potentials     at 
points     . This CSD is given as:

In 3-D case these functions are the 
CSD distribution we consider. In 1-D 
or 2-D we need to specify how CSD is 
distributed in transverse dimensions: 
for example, we can assume 
a cylindrical distribution in 1-D, or 
a slice of given thickness in 2-D. 

Then we use the laws of electrostatics 
to calculate the potentials bi 
corresponding to the basis CSD 
distributions. The relation is given by 
a differential operator, in 3-D:

and cross-kernel function related to

We define a kernel K related to the 
space F: 

and the matrix K is                          .
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5. Good results for arbitrary electrodes placement

KCSD reconstruction in 2-D

It may happen that
a contact or two on 
a regular multi – 
electrode breaks. 
KCSD still works.

CSD as reconstructed 
using the kCSD method. 

Even more, kCSD 
gives good results 
for electrodes 
placed randomly.

Model Reconstruction
single many

Potentials which would be 
measured on the grid 
(interpolated with splines). 
These are the data one 
would work with without 
employing current-source 
density analysis. 

Model CSD superposed 
with the positions of 
recording contacts of a 
multi-electrode array used 
in Wirth and Lüscher 
(2004). 

4. From simple bases to smooth kernels

K  x j , x :bi  x :

But the kCSD method can provide smooth CSDs even if space is defined by simple 
step functions, if only the dimension n is sufficiently high (figure below: n ~ 1000). 

If we start from smooth basis functions we arrive to smooth kernels. For example, 
as a CSD basis element we can take a Gauss function centered at some point.

bi  x : K  x j , x :

Despite different shapes of the basis functions we get similar and smooth kernels 
which points towards the universality of the method. 
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